首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
部分重金属化合物对淡水发光菌的毒性研究   总被引:9,自引:1,他引:9  
应用微板毒性分析方法,分别测定了CdCl2·2.5H2O、CoSO4·5H2O、Cr(NO3)3·3H2O、Cu(NO3)2·3H2O、Fe(NO3)3·3H2O、MnCl2·9H2O、Na2SeO3、ZnSO4·7H2O、Ni(NO3)2·6H2O9种重金属离子化合物及其混合物对淡水发光菌—青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)的发光抑制毒性.结果表明,9种重金属离子化合物对Q67的剂量-效应关系均可用Weibull或Logit模型有效描述.由拟合剂量-效应曲线得到这9种重金属离子化合物的半数效应浓度EC50的负对数值(-logEC50)分别为4.35、3.08、2.39、3.83、3.34、2.39、3.32、3.93和2.76,说明其毒性顺序为:CdCl2·2.5H2O>ZnSO4·7H2O>Cu(NO3)2·3H2O>Fe(NO3)3·3H2O>Na2SeO3>CoSO4·5H2O>Ni(NO3)2·6H2O>Cr(NO3)3·3H2O≈MnCl2·9H2O.为了研究重金属混合物的毒性规律,设计了4组等效应浓度(EC50、EC15、EC10和EC5)比混合物,测试了其混合物毒性,并应用剂量加和(DA)、独立作用(IA)原理及经典联合毒性评价方法进行了分析.DA与IA分析表明,所研究的4种混合物的毒性具有拮抗特征,而毒性单位法(TU)和混合指数法(MTI)的评价结果均为部分相加作用,相加指数法(AI)的评价结果则为拮抗作用.所选评价方法不同,混合物毒性评价结果可能也不同.  相似文献   

2.
多组分苯胺类混合物对发光菌的抑制毒性   总被引:12,自引:7,他引:12  
以淡水发光菌——青海弧菌(Q67)为指示生物,96微孔板为实验反应载体,微板光度计为发光强度测试设备,测定了苯胺、邻甲基苯胺、对甲基苯胺、邻硝基苯胺、对硝基苯胺及其混合物对发光菌的发光抑制毒性,应用非线性最小二乘拟合技术与剂量加和(DA)及独立作用(IA)原理研究了混合物的毒性规律.1)分别测定每种化合物的剂量-效应数据并进行非线性拟合.结果表明,5种苯胺类化合物的剂量-效应曲线(DRC)均可用Logit与Weibull函数有效表征,从这些模型估算的半数效应浓度负对数值(-logEC50)分别为2.11、2.35、2.49、3.60和3.88(EC50单位:mol·L-1),可知其对发光菌的毒性大小顺序为:苯胺<邻甲基苯胺<对甲基苯胺<邻硝基苯胺<对硝基苯胺.2)根据组分EC50、EC10和EC1设计3个等效应浓度比混合物进行混合物毒性实验,并对混合物剂量-效应数据进行非线性拟合得到混合物DRC.结果表明,混合物DRC可用Box-Cox-Logit与Box-Cox-Weibull函数有效表征.3)根据单一化合物DRC模型,分别应用剂量加和(DA)与独立作用(IA)模型对混合物DRC进行预测.结果表明,无论考察混合浓度比例还是效应水平,剂量加和模型都能准确预测苯胺类混合物的毒性,而独立作用模型倾向于高估混合物毒性.  相似文献   

3.
部分离子液体及其混合物对发光菌的毒性作用   总被引:6,自引:0,他引:6  
离子液体(ILs)因其环境安全和良好的非挥发性而得以广泛应用,尽管其理化性质与工程数据一直在不断扩充,但其可用的毒性及生态毒性数据很少.以青海弧菌Q67为指示生物,应用微板发光毒性测试方法,测定了C6H11BF4N(2S1)、C8H15ClN2(S2)、C8H15BF4N2(S3)、C9H14BF4N(S4)、C9H17BF4N2(S5)、C9H17BrN2(S6)、C11H13BF4N2(S7)、C11H13ClN2(S8)、C12H23BrN2(S9)、C14H27BF4N(2S10)、C14H27ClN(2S11)和C16H31ClN(2S12)等12种ILs对发光菌的发光抑制毒性.结果表明,4种ILs(S9、S10、S11、S12)具有高抑制毒性(pEC50>4.5),而另外8种毒性相对较小(pEC50<3.5).为研究混合ILs的联合毒性,根据单个ILs的剂量-效应关系,构建了两组混合物,即由S9、S10、S11和S12构成的高毒性组(简称H组)以及由S2、S3、S4、S5、S6和S8构成的低毒性组(简称L组)混合物.应用非线性模拟技术与剂量加和(DA)及独立作用(IA)模型对混合物毒性数据进行拟合与预测分析,结果表明,以等效应浓度比法设计的混合物,无论是对于H组的4个混合物还是L组的4个混合物,其联合毒性大小均可用DA模型准确预测.对于均匀试验设计浓度比法设计的混合物,H组的6个混合物的毒性可用DA模型有效预测,而L组的6个混合物由于剂量-效应曲线在低浓度区翘起,其混合物毒性用DA或用IA模型预测均有一定误差.  相似文献   

4.
5种取代酚化合物对淡水发光菌的联合毒性   总被引:22,自引:7,他引:22  
以新型淡水发光菌——青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)为检验生物,以VeritasTM微孔板光度计为发光强度测试设备,分别测定了3,5-二羟基甲苯、2,3-二甲基苯酚、对氯苯酚、邻氯苯酚、2,4-二氯苯酚对淡水发光菌的发光抑制毒性及其混合物的联合毒性.结果表明,5种取代酚的剂量-效应关系都可用Weibull模型有效描述,从这些模型估算的半数效应浓度负对数值(-logEC50)分别为2.69、3.08、3.43、2.81和3.66,可知其对发光菌的毒性大小顺序为:2,4-二氯苯酚>对氯苯酚>2,3-二甲基苯酚>邻氯苯酚>3,5-二羟基甲苯.分别设计浓度等于各自之EC50和EC10的2个等效应浓度比混合物以及3个不同效应浓度比混合物进行联合毒性实验,结果发现,在所实验的浓度范围内各个混合物的剂量加和(DA)模型与独立作用(IA)模型具有相似的作用规律,其联合毒性既可用DA模型也可用IA模型进行预测.  相似文献   

5.
测定环境污染物对青海弧菌发光强度抑制的微板发光法研究   总被引:21,自引:9,他引:21  
以新型淡水发光菌——青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)为检测生物,以VeritasTM微孔板光度计为发光强度测试设备,建立了测定环境污染物对发光菌发光强度抑制毒性的微板发光测试新方法.系统地研究了pH值、菌密度、反应时间等实验条件对发光强度的影响.应用该方法成功地测定了7种取代酚环境污染物对Q67的发光抑制毒性效应.提出应用非线性迭代最小二乘拟合法模拟环境污染物对Q67毒性的剂量-效应曲线(DRC),拟合效应与实验结果之间的相关系数均大于0.99.通过拟合的DRC参数,准确地计算了污染物的半数效应浓度EC50.对比有关文献方法,微板发光法具有更简便快捷,节省试剂药品,便于多次平行测定从而提高准确度等优点.  相似文献   

6.
多种污染物混合特别是低浓度下的混合对生物的联合毒性是生态毒理学研究的热点之一。选择了3类污染物苯酚、间甲基苯酚、苯胺、对硝基苯胺、硝酸铅,采用美国微板光度计测定了它们对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的单一及联合毒性。应用非线性拟合技术模拟了这5种物质及其混合物的剂量-效应曲线,硝酸铅可用Logit模型模拟,其它4个物质能用Weibull模型准确描述,所有拟合相关系数在0.98以上,均方根误差在0.02以下。根据纯物质的EC50值,获得这5个物质的毒性强弱顺序:硝酸铅〉对硝基苯胺间甲基苯酚苯酚苯胺。混合实验设计了各物质在EC50、EC1、无观察效应浓度(no observed effect concentration,NOEC)比例的混合。用浓度加和(dose addition,DA)和独立作用模型(independent action,IA)对混合物毒性进行预测。IA基本准确预测了这5个物质在各自EC50混合的毒性。DA与IA模型都稍微过高地预测了以EC1及NOEC浓度比例混合的联合毒性,但都在毒理学实验容许的范围之内。这5个物质以NOEC混合时对测试生物Q67没有产生明显毒性,但是还不能判定这些物质在此浓度下混合是安全的。污染物在各自的NOEC浓度下混合是否对其它生物有潜在的威胁还需更多毒理学实验支持。  相似文献   

7.
多种污染物混合特别是低浓度下的混合对生物的联合毒性是生态毒理学研究的热点之一。选择了3类污染物苯酚、间甲基苯酚、苯胺、对硝基苯胺、硝酸铅,采用美国微板光度计测定了它们对发光菌青海弧菌.Q67(Vibrio-qinghaiensissp-Q67)的单一及联合毒性。应用非线性拟合技术模拟了这5种物质及其混合物的剂量.效应曲线,硝酸铅可用Logit模型模拟,其它4个物质能用Weibull模型准确描述,所有拟合相关系数在0.98以上,均方根误差在O.02以下。根据纯物质的EC50值,获得这5个物质的毒性强弱顺序:硝酸铅〉对硝基苯胺〉间甲基苯酚〉苯酚〉苯胺。混合实验设计了各物质在EC50、EC1、无观察效应浓度(noobserved effectcon centration,NOEC)比例的混合。用浓度加和(doseaddition,DA)和独立作用模型(independentaction,IA)对混合物毒性进行预测。IA基本准确预测了这5个物质在各自EC50混合的毒性。DA与队模型都稍微过高地预测了以EC。及NOEC浓度比例混合的联合毒性,但都在毒理学实验容许的范围之内。这5个物质以NOEC混合时对测试生物Q67没有产生明显毒性,但是还不能判定这些物质在此浓度下混合是安全的。污染物在各自的NOEC浓度下混合是否对其它生物有潜在的威胁还需更多毒理学实验支持。  相似文献   

8.
五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点   总被引:2,自引:0,他引:2  
以5种氨基甲酸酯类农药涕灭威(ALD)、残杀威(BAY)、呋喃丹(CAR)、灭多威(MET)和抗蚜威(PIR)为研究对象,应用均匀设计射线法设计五元混合物体系共6条射线(U1,U2,…,U6),应用基于发光菌青海弧菌Q67的微板毒性分析法(MTA)系统地考察了5种农药及其混合物的毒性,以浓度加和(CA)为参考模型分析混合物毒性相互作用(协同或拮抗作用)。结果表明,Logti和Weibull函数能较好地拟合5种氨基甲酸酯农药及其混合物对发光菌Q67的浓度-效应数据(R20.99,RMSE0.032);以EC50的负对数值pEC50为毒性指标,5种农药的毒性顺序为BAY(pEC50=2.87)CAR(pEC50=2.67)ALD(pEC50=2.00)MET(pEC50=1.99)PIR(pEC50=1.79);依据CA,五元氨基甲酸酯类农药的6条混合物射线中,有2条呈加和作用,4条呈拮抗作用,其中U2和U4在整条浓度-效应曲线上呈现了明显的拮抗作用,而U3和U6的弱拮抗作用分别发生在混合物浓度的中高浓度区和中低浓度区;五元氨基甲酸酯类农药混合物的毒性与组分灭多威(MET)的浓度比呈良好的负相关关系(r=-0.9238),且线性模型对混合物毒性具有良好的预测能力。  相似文献   

9.
吡啶类离子液体对青海弧菌Q67的混合毒性评估   总被引:1,自引:0,他引:1  
合污染物产生的累积与毒性相互作用具有潜在的环境与健康风险。以6种吡啶类离子液体(IL):丁基溴化吡啶([Bpy]Br)、己基溴化吡啶([Hpy]Br)、辛基溴化吡啶([Opy]Br)、丁基氯化吡啶([Bpy]Cl)、己基氯化吡啶([Opy]Cl)和辛基氯化吡啶([Opy]Cl)为混合物组分,应用直接均分射线法(EquRay)和均匀设计射线法(UD-Ray)分别设计4组二元IL混合物和2组三元混合物,每组混合物包括5条具有不同浓度配比的混合物射线。应用微板毒性分析法测定6种IL及其30条混合物射线对青海弧菌Q67的发光抑制毒性,以浓度加和(CA)为加和参考模型分析混合物毒性相互作用。结果表明,Logit函数能有效地拟合6种吡啶IL及其30条混合物射线的浓度-效应数据。若以半数效应浓度的负对数(pEC50)为毒性指标,6个吡啶IL对Q67的毒性与烷基链上碳原子数目正相关,且每增加2个碳原子,其毒性约增加1。IL的阴离子(Br-或Cl-)对毒性没有影响。除己基氯化吡啶([Hpy]Cl)和辛基氯化吡啶([Opy]Cl)的二元混合物呈现明显拮抗作用外,其他二元及三元混合物都为加和作用。  相似文献   

10.
等效线图法(isobologram)是评估化学混合物毒性相互作用的经典方法之一,然而该方法仅能评估混合物在某一特殊浓度效应水平(通常为50%的浓度效应水平,即EC50)的联合毒性作用情况。因此,拓展等效线图法并用于不同效应水平下混合物毒性的评估显得尤为必要。以杀菌剂多果定(Dod)和3种离子液体(ILs)包括溴化丁基吡啶([bpy]Br)、溴化己基吡啶([hpy]Br)和溴化辛基吡啶([opy]Br)为混合物组分,采用直线均分射线法设计3组二元混合物体系(Dod-[bpy]Br、Dod-[hpy]Br和Dod-[opy]Br)共15条射线,应用微板毒性分析法系统测定各污染物及其混合物射线对青海弧菌Q67(Vibro qinghaisiense sp. Q67,Q67)的毒性,应用拓展等效线图法分析15条混合物射线在5个不同效应水平(EC20、EC30、EC40、EC50和EC60)的毒性相互作用,并与经典等效线图法和浓度加和模型(CA)评估的结果进行比较。结果表明:以p EC50为毒性指标,3种吡啶ILs对Q67的毒性具有烷基链效应,即毒性大小顺序为Dod-[opy]BrDod-[hpy]BrDod-[bpy]Br; 3组二元混合物体系的15条射线的毒性,随农药Dod浓度比的减少而减弱;拓展等效线图法可以比较直观地表征3组Dod-ILs混合物体系在5个不同效应水平的拮抗作用,且拮抗作用强度随Dod浓度比的增加而变化,即先增强后减弱;拓展等效线图法可以有效地评估二元混合物在多个效应水平的联合毒性相互作用。  相似文献   

11.
低剂量刺激高剂量抑制的Hormesis效应常常呈现J-型剂量-效应关系,如何评价Hormesis污染物及其混合物的毒性目前尚未解决.选择微板毒性分析法(Microplate Toxicity Analysis,MTA)获得的具有J-型剂量-效应关系的丙酮、乙腈及S-型剂量效应关系的二甲亚砜为混合物组分,以直接均分射线法构建丙酮-二甲亚砜(J-S型)、乙腈-二甲亚砜(J-S型)和丙酮-乙腈(J-J型)3个二元混合物体系,利用不同效应浓度水平下以浓度加和为参考模型的多个等效线图分析污染物的毒性变化规律.结果表明,所有二元混合物仍然具有J-型浓度-效应关系特征,除丙酮-乙腈二元混合体系在1个效应浓度水平下可能呈现协同特征外,其余二元混合物在不同效应浓度水平均表现为拮抗特征.  相似文献   

12.
离子液体与有机磷农药间的毒性相互作用   总被引:3,自引:0,他引:3  
"绿色"溶剂离子液体(ILs)与其他污染物之间的毒性相互作用已有报道,但相关数据仍较为缺乏。以7种具有不同阴阳离子组成的ILs:溴化丁基吡啶(IL1)、氯化丁基-2,3-二甲基咪唑(IL2)、丁基-3-甲基咪唑翁磷酸盐(IL3)、丁基-3-甲基咪唑正辛基硫酸(IL4)、丁基-2,3-二甲基咪唑二乙二醇单甲醚硫酸盐(IL5)、辛基-3-甲基咪唑二乙基醚单甲磺硫酸(IL6)和氯化己基-3-甲基咪唑(IL7),与5种有机磷农药(OPs):敌敌畏(DIC)、乐果(DIM)、草甘膦(GLY)、久效磷(MON)和磷胺(PHO),作为混合物组分,以等效应浓度比射线法设计7种ILs分别与5种OPs等EC_(50)配比的35组二元混合物,应用微板毒性分析法(MTA)测定这些混合物对青海弧菌Q67的毒性,以浓度加和(CA)和独立作用(IA)为参考模型分析毒性相互作用。结果表明,不同的IL-OP混合物呈现的作用类型不同:如IL1-DIM、IL2-DIM、IL3-DIM、IL6-DIM、IL2-MON和IL7-DIM的混合物呈明显的拮抗作用;IL3-DIC和IL2-GLY的混合物呈明显的协同作用;IL5-DIM和IL4-MON的混合物在较高浓度区呈拮抗作用;而IL3-GLY和IL6-DIC的混合物在较高浓度区呈协同作用;其余的混合物则为加和作用。  相似文献   

13.
三氯生(triclosan,TCS)是一种广谱性抗菌剂,2005年欧盟水框架指令将TCS列为一种新型污染物。目前对TCS的研究局限于急性毒性实验,关于TCS毒性随时间的变化以及不同溶解状态下TCS的毒性差异的研究却鲜有报道。应用以96孔微板为暴露反应载体的微板毒性分析法,添加氢氧化钠(NaOH)或使用二甲亚砜(DMSO)作为助溶剂溶解TCS,分别测定其对青海弧菌Q67的相对发光抑制毒性(15min急性毒性和时间毒性)和对人乳腺癌细胞MCF-7在不同暴露时间(24、48和72h)内的细胞增殖抑制毒性。Q67的急性毒性实验结果表明,碱性条件下TCS的毒性(EC50=3.97(10-8mol.L-1)大于DMSO作为助溶剂时的毒性(EC50=1.68(10-4mol.L-1)。无论碱性条件还是DMSO助溶,TCS在不同暴露时间内对Q67的时间毒性没有明显差异。在不同暴露时间下MCF-7增殖抑制率实验中,DMSO作为助溶剂时,TCS的最高实验浓度为1.46(10-3mol.L-1,随着暴露时间的延长,抑制率在24、48和72h时分别为27.8%、44.2%和62.4%;碱性环境时TCS的最高实验浓度为1.39(10-6mol.L-1,随着暴露时间的延长,抑制率在24、48和72h时分别为20.2%、55.8%和73.9%。研究表明,在DMSO和NaOH作为助溶剂的条件下,TCS对MCF-7均存在时间毒性差异,并且NaOH碱性溶液中TCS对MCF-7的毒性远大于DMSO作为助溶剂时的毒性。  相似文献   

14.
环境雌激素对生命健康影响受到广泛关注,现行污染物环境标准制订和风险评价只针对单一化合物而非混合物效应,不足以保护生命安全与人类健康。为探讨环境雌激素的混合物效应,选择对雌激素敏感的人乳腺癌MCF-7细胞增殖实验,检测雌二醇(E2)、邻苯二甲酸酯类化合物(DBP和DEHP)的单一及其联合雌激素活性;基于单一化合物的浓度-反应曲线,运用浓度相加(CA)和独立作用(IA)模型对混合物的毒性进行预测,并将模型预测结果与混合物实验数据进行比较分析。结果表明,E2、DBP、DEHP对MCF-7细胞的单一作用数据可通过Weibull方程拟合,由拟合方程得到的半数效应浓度(EC50)及95%置信区间分别为3.450×10-6(2.373×10-6~1.675×10-5)、5.138(1.489~1.082×10)、1.186(4.478×10-1~2.24)μmol·L-1;3种化合物的混合物数据亦可通过Weibull、Logistic和Exp Gro1方程进行有效拟合,混合物效应与化合物单独作用产生的效应具有显著性差异;3种化合物表现非相似联合作用,利用独立作用(IA)模型预测混合物效应较为可靠,外源性环境雌激素与内源性雌激素联合作用产生的混合效应显著。环境雌激素混合物毒性可以通过相加作用模型预测,为环境复合污染的风险评价和管理提供基础数据。  相似文献   

15.
采用食下毒叶法在室内测定了二甲戊乐灵、异丙甲草胺、草甘膦铵盐等16种除草剂对家蚕的急性毒性,并根据其毒性范围进行分极,评价了其对环境的安全性.结果表明,10%啶嘧磺隆可湿性粉剂96hLC50为5.58mg·kg-(1桑叶),属于高毒;50%草甘膦可溶粉剂和80%莠灭净可湿性粉剂96hLC50分别为68.17mg·kg-(1桑叶)和111.75mg·kg-1(桑叶),属于中毒;其它13种药剂的LC50>200mg·kg-(1桑叶),属于低毒.  相似文献   

16.
为考察多种重金属同时存在的混合溶液对藻类的生物毒性,选择Cr(Ⅲ)、Pb(Ⅱ)、Hg(Ⅱ)、Cd(Ⅱ)、Mn(Ⅱ)5种重金属,以按照国家饮用水卫生标准限值浓度配制的单一重金属溶液和多种重金属混合溶液为受试样品,并利用本实验室开发的藻红外测试技术,评价了低浓度下单一重金属溶液和多种重金属共存溶液对藻的生物毒性。实验结果显示:按照饮用水标准限值配制的5种单一重金属溶液均未观察到对藻有生物毒性,但在多种重金属共存的27个不同组合的混合溶液中,有73.1%的样品表现出明显的生物毒性;藻响应出现率与混合溶液中重金属的总浓度呈正相关关系(r=0.8942)。当多种重金属以二元至五元混合时,藻响应出现率分别为50%、80%、100%、100%,表明随着重金属组分的增加,混合溶液的毒性作用越来越显著。当不同混合溶液的重金属总浓度大于0.11 mg·L-1时,平均累积藻响应占比显著上升到93%,表明重金属混合溶液中藻的毒性与总浓度之间存在剂量响应关系。采用平均藻响应出现率分析,结果显示混合溶液中不同重金属的相对影响顺序为:Cr(Ⅲ)87.5%>Pb(Ⅱ)和Hg(Ⅱ)58.3%>Cd(Ⅱ)和Mn(Ⅱ)54.3%,表明Cr(Ⅲ)表现出的藻毒性远高出其他重金属。现行的水质标准通常采用单一指标和限值,本研究结果表明采用单一指标不能有效规避多种污染物共存体系的环境风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号