首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, zerovalent iron nanoparticles (Fe0) were synthesized by chemical reduction method using ferric chloride hexahydrate (FeCl3?·?6H2O) as a starting material. Sodium borohydride (NaBH4) was used as a reducer. The synthesized nanozerovalent iron (NZVI) was separated using magnets. The X-ray diffraction pattern of iron (Fe) nanoparticles showed that the presence of intensive diffraction peak at 2θ value of 45.33° from the lattice plane of face-centered cubic Fe unequivocally indicates that the particles are made of pure Fe. The size of the synthesized NZVI was found to be 16.64?nm. The scanning electron micrograph revealed that the particles have a hexagonal and spherical shape in nature. EDX showed the surface atomic distribution and chemical composition of NZVI. The decolorization efficiency rose with increasing concentration of nanoparticles as well as with time. Maximal color removal efficiency was 90.72% when using 0.5?g/100?mL Fe nanoparticle for acridine orange. Data revealed that the function of NZVI on color removal efficiency was statistically significant. The correlation coefficient between NZVI concentration and time showed a strong negative correlation for dyes used in the experiment.  相似文献   

2.
Perfluoroalkyl and polyfluoroalkyl substances are occurring in consumer and industrial products. They have been found globally in the aquatic environment including drinking water sources and treated wastewater effluents, which has raised concern of potential human health effects because these substances may be bioaccumulative and extremely persistent. The saturated carbon–fluorine bonds of the substances make them resistant to degradation by physical, chemical, and biological processes. There is therefore a need for advanced remediation methods. Iron-based methods involving high-valent compounds are appealing to degrade these substances due to their high oxidation potentials and capability to generate environmentally friendly by-products. This article presents for the first time the oxidation ability of tetraoxy anions of iron(V) (FeVO4 3?, Fe(V)), and iron(IV) (FeIVO4 4?, Fe(IV)), commonly called ferrates, in neutral and alkaline solutions. Solid compounds of Fe(V) (K3FeO4) and Fe(IV) (Na4FeO4) were added directly into buffered solution containing perfluorooctansulfonate and perfluorooctanoic acid at pH 7.0 and 9.0, and mixed solutions were subjected to analysis for remaining fluoro compounds after 5 days. The analysis was performed by liquid chromatography–mass spectrometry/mass spectrometry technique. Fe(IV) showed the highest ability to oxidize the studied contaminants; the maximum removals were 34 % for perfluorooctansulfonate and 23 % for perfluorooctanoic acid. Both Fe(V) and Fe(IV) had slightly higher tendency to oxidize contaminants at alkaline pH than at neutral pH. Results were described by invoking reactions involved in oxidation of perfluorooctansulfonate and perfluorooctanoic acid by ferrates in aqueous solution. The results demonstrated potentials of Fe(V) and Fe(IV) to degrade perfluoroalkyl substances in contaminated water.  相似文献   

3.
Due to climate change and anthropogenic nutrients’ runoff into freshwater or shallow lakes, eutrophication caused by phosphorus (P) can be seen in the frequent occurrence of cyanobacterial blooms and excessive growth of macrophytes. Subsequently, decomposition of cyanobacterial bloom biomass (CBB) and macrophytes leads to massive autochthonous organic matter (OM) and creates hypoxia in bodies of water. In this study, we investigated the effects of OM and iron on phosphorus release from lake sediments under anaerobic conditions. As with CBB, the addition of cellulose also enhanced P release from sediments during microcosm experiments, while total phosphorus (TP) concentration in the overlying water displayed an inverse relationship to cellulose amendment, with high TP concentration (0.41?±?0.07?mg?L?1) observed in the treatment of less cellulose amendment (1?g of cellulose). In addition, P release from OM-rich sediments was effectively inhibited when amorphous FeOOH was added to the microcosms. P release was inhibited by 66–92% when the weight ratio between total Fe and total P in sediments varied from 18 to 60. Thus, iron treatment was useful to inhibit P release from OM-rich sediments, and could alleviate eutrophication problems.  相似文献   

4.
应用砷污染水稻土的厌氧富集培养,探讨水稻土中潜在存在铁厌氧生物循环及其对氮和砷的耦合作用.富集培养直接证明了水稻土中铁的厌氧生物循环:三价铁(人工合成针铁矿)在厌氧条件下被逐渐还原成二价铁;铁还原过程结束并外源添加硝酸根时,培养基中新生的二价铁在依赖于硝酸根的铁氧化菌的作用下被氧化;当提供新的电子供体乙酸时,生物合成的铁矿重新被还原.在铁氧化还原循环过程中,随着铁的还原,培养基中砷的浓度不断增加,反之,当铁逐渐氧化的同时不断地吸附固定培养基中的砷.在铁的厌氧氧化阶段,铁氧化的同时硝酸根被还原,培养基中积累了NH4+和NO2-.因此,厌氧水稻土中可以进行完整的铁氧化还原循环,同时这个循环过程耦合了氮和砷的迁移转化.  相似文献   

5.
铁限制对浮游植物生长和群落组成的影响研究综述   总被引:2,自引:0,他引:2  
Fe是浮游植物生长必需的微量元素,其供应对水体中浮游植物的生物量、生长速率以及种群组成均具有重要的影响。从Fe在浮游植物新陈代谢中的作用出发,重点对近年来国内外有关Fe对浮游植物光合作用、营养盐吸收利用以及浮游植物群落组成的影响等方面的研究进展作了较详细的介绍,认为:(1)Fe通常是HNLC海域中初级生产力的主要限制因子之一,Fe限制会导致浮游植物细胞色素密度以及相应的光合叶绿素减少,从而降低其光合作用速率,导致生长缓慢;(2)Fe限制还能改变浮游植物吸收营养盐(N、P、Si等)的速率和比例,影响浮游植物的种间竞争,进而影响其群落结构;(3)Fe加富能够改变水体中浮游植物的优势种群,在海洋中表现为硅藻占优势,而在淡水湖泊中则表现为绿藻和细菌占优势;(4)在淡水湖泊中总Fe含量普遍较高,但浮游植物可利用Fe的含量受水体中有机配体的种类和数量的影响,在一定条件下Fe也可能成为浮游植物生长的限制因子,这对进一步认识湖泊水华暴发的机制具有一定的意义;(5)有学者提出将施加Fe作为一种生态手段,来提高HNLC海域的初级生产力,从而缓解由于大气中CO2浓度增加而导致的全球变暖的趋势;相反地,将降低浮游植物可利用Fe含量作为一种生态手段,来控制富营养化湖泊中藻类的生物量及群落结构,从而缓解日益严重的水华问题,值得进一步研究和探讨。  相似文献   

6.
Activated carbon modified by impregnation with iron (III) chloride solution (Fe‐ACs) were studied to try to raise their adsorption capacity for hydrogen sulfide, a malodorous substance.

The surface area and pore volume of activated carbon were decreased by impregnation, but the amount of hydrogen sulfide adsorbed onto Fe‐AC was larger than that onto raw activated carbon (R‐AC). In particular, a large increase of the amount adsorbed onto Fe‐AC was noted at low equilibrium pressure. It was assumed that the increase of amount of hydrogen sulfide adsorbed onto Fe‐AC was due to the chemical interaction between iron (III) chloride on the pores in addition to the physical adsorption onto pores of activated carbon. Fe‐AC shows a high selectivity for hydrogen sulfide.  相似文献   

7.
The aim of this study was to examine the production of nanoscale ions via the liquid phase reduction method and the effectiveness of the removal of nitrate nitrogen (NO3?–N) as well as measure the products and kinetics of the reactions. The nanoparticles obtained were approximately 50 nm in diameter and the main component was iron (Fe). This custom-made nanoscale Fe was highly positively charged, and reacted rapidly with NO3?–N in oxygen-free and neutral conditions at room temperature. A 90% removal rate was achieved when the reaction occurred for 30 min in simulation sample water with vigorous shaking at 250 r/min at NO3?–N concentrations of 30, 50, 80 or120 mg N/L. The nanometer Fe dosage was maintained throughout the experiment at 4 g/L. A first-order kinetics equation was applied to the obtained experimental data which followed a pseudo first-order reaction. Data demonstrated that the removal of nitrate nitrogen from polluted groundwater using a nanoscale Fe iron was effective and rapid.  相似文献   

8.
近年来,稻田Cd污染引起的环境及健康问题日益突出。应用钝化技术对土壤中有效性Cd进行钝化对稻田生态系统中Cd的生物地球化学循环具有重要的理论和实际意义。在广东省韶关市仁化县董塘镇红星村一受Cd污染的稻田上,设置大田试验,研究铁基生物炭对Cd在大田土壤-水稻系统迁移的影响以及对作物产量的影响。试验共设6个处理:(1)空白对照;(2)每一季水稻插秧前,一次性施加1500 kg·hm-2的普通生物炭;(3)每一季水稻插秧前,一次性施加75 kg·hm-2的零价铁(Fe0);(4)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=1%的铁基生物炭(ω(Fe)=1%in Fe-Biochar);(5)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=3%的铁基生物炭(ω(Fe)=3%in Fe-Biochar);(6)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=5%的铁基生物炭(ω(Fe)=5%in Fe-Biochar)。结果表明:(1)施用生物炭、铁粉和铁基生物炭土壤钝化调理剂可以增加水稻产量,显著降低籽粒重金属Cd含量;(2)施用铁基生物炭可以显著增加水稻根表铁膜Fe含量,同时显著增加水稻根表铁膜固定的Cd量,抑制重金属Cd向籽粒的运输累积。综合考虑施用成本和钝化效果,对于Cd污染稻田,建议施用1500 kg·hm-2、ω(Fe)=3%的铁基生物炭材料。  相似文献   

9.
• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield. • Fe(II) and Fe(III) promoted more degradation of proteins and amino acids than Fe0. • The highest enrichment of Geobacter was noted in samples added with Fe0. • Cysteine was accumulated during iron enhanced anaerobic sludge digestion. • Both iron content and valence were important for methane production. This study compared effects of three different valent iron (Fe0, Fe(II) and Fe(III)) on enhanced anaerobic sludge digestion, focusing on the changes of oxidation reduction potential (ORP), dissolved organic nitrogen (DON), and microbial community. Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days (d), the maximum methane production rate of sludge samples dosed with respective Fe0, Fe(II) and Fe(III) at the same concentration showed indiscernible differences at each iron dose, regardless of the different iron valence. Moreover, their behavior in changes of ORP, DON and microbial community was different: (1) the addition of Fe0 made the ORP of sludge more negative, and the addition of Fe(II) and Fe(III) made the ORP of sludge less negative. However, whether being more or less negative, the changes of ORP may show unobservable effects on methane yield when it ranged from −278.71 to −379.80 mV; (2) the degradation of dissolved organic nitrogen, particularly proteins, was less efficient in sludge samples dosed with Fe0 compared with those dosed with Fe(II) and Fe(III) after an incubation period of 30 d. At the same dose of 160 mg/L iron, more cysteine was noted in sludge samples dosed with Fe(II) (30.74 mg/L) and Fe(III) (27.92 mg/L) compared with that dosed with Fe0 (21.75 mg/L); (3) Fe0 particularly promoted the enrichment of Geobacter, and it was 6 times higher than those in sludge samples dosed with Fe(II) and Fe(III) at the same dose of 160 mg/L iron.  相似文献   

10.
In the present study arsenic contaminated simulated water and groundwater was treated by the combination of biological oxidation of tri-valent arsenite [As (III)] to penta-valent arsenate [As (V)] in presence of Acidothiobacillus ferrooxidans bacteria and its removal by adsorptive filtration in a bioreactor system. This method includes the immobilisation of A.ferrooxidans on Granulated Activated Carbon (GAC) capable of oxidising ferrous [Fe (II)] to ferric [Fe (III)]. The Fe (III) significantly converts the As (III) to As (V) and ultimately removed greater than 95% by the bed of GAC, limestone, and sand. The significant influence of Fe (II) concentration (0.1–1.5?gL?1), flowrate (0.06–0.18?Lh?1), and initial As (III) concentration (100–1000?µgL?1) on the arsenic removal efficiency was investigated. The simulated water sample containing the different concentration of As (III) and other ions was used in the study. The removal of other co-existing ions present in contaminated water was also investigated in column study. The concentration of arsenic was found to be <10?µgL?1 which is below Maximum Contaminant Level (MCL) as per WHO in treated water. The results confirmed that the present system including adsorptive-filtration was successfully used for the treatment of contaminated water containing As (III) ions.  相似文献   

11.
Availability of colloidal ferric oxides to coastal marine phytoplankton   总被引:5,自引:0,他引:5  
Cell growth of a coastal marine diatom, Phaeodactylum tricornutum (stock cultures), and two red tide marine flagellates, Heterosigma akashiwo and Gymnodinium mikimotoi (stock cultures), in the presence of soluble chelated Fe(III)-EDTA (1:2) and of four different phases of ferric oxide colloids were experimentally measured in culture experiments at 20°C under 3000 lux fluorescent light. Soluble Fe(III)-EDTA induced the maximal growth rates and cell yields. The short-term uptake rate of iron by H. akashiwo in Fe(III)-EDTA medium was about eight times faster than that in solid amorphous hydrous ferric oxide (Fe2O3·xH2O) medium. In culture experiments supplied with four different ferric oxide forms, the orders of cell yields are amorphous hydrous ferric oxide>-FeOOH (lepidocrocite)>Fe5O7(OH)·4H2O (hydrated ferric oxyhydroxide polymer >-FeOOH (goethite). The specific growth rates () at logarithmic growth phase in Fe(III)-EDTA, amorphous hydrous ferric oxide and -FeOOH media were significantly greater than those in Fe5O7 (OH)·4H2O and -FeOOH media. The thermodynamically stable forms such as Fe5O7(OH)·4H2O and -FeOOH supported a little or no phytoplankton growth. The iron solublities and/or proton-promoted iron dissolution rates of these colloidal ferric oxides in seawater at 20°C were determined by simple filtration techniques involving -activity measurements of 59Fe. The orders of solubilities and estimated dissolution rate constants of these ferric oxides in seawater were consistent with that of cell yields in the culture experiments. These results suggest that the availability of colloidal iron to provide a source of iron for phytoplankton is related to the thermodynamic stability and kinetic lability of the colloidal ferric oxide phases, which probably control the uptake rate of iron by phytoplankton.  相似文献   

12.
Tadpoles of the common freshwater Sunda toad, Duttaphrynus melanostictus (Amphibia, Bufonidae), were exposed for a 4-day period under laboratory conditions to copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminum (Al), and manganese (Mn) at various concentrations. Mortality was assessed and median times of death (LT50) and lethal concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure times and concentrations for all metals. LC50 (96?h) for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.03, 0.3, 4.2, 1.5, 8.8, 0.4, 1.9, and 39?mg?L?1, respectively. Cu was the most toxic to D. melanostictus, followed by Cd, Fe, Al, Pb, Zn, Ni, and Mn (Cu?>?Cd?>?Fe?>?Al?>?Pb?>?Zn?>?Ni?>?Mn). Duttaphrynus melanostictus is similarly sensitive to these metals as other amphibian tadpoles.  相似文献   

13.
植物根表铁锰氧化物胶膜的环境生态作用   总被引:4,自引:0,他引:4  
邢承华  蔡妙珍  刘鹏  徐根娣 《生态环境》2006,15(6):1380-1384
许多湿地、水生植物根系都具有向根际环境释放氧气和氧化物,在根表和根际形成铁、锰氧化物胶膜的能力。因其所具有的特殊的物理或化学结构,植物根表的铁锰氧化物胶膜在环境生态中起重要作用。文章综述了植物根表铁锰氧化物的形成与特征,对有害金属和类金属污染物、有机污染物的吸附和富集作用,对富营养化水体的净化作用,以及提高植物的耐酸和耐贫瘠能力。借助新技术或研究手段强化铁、锰氧化物胶膜对湿地或水体有害金属和有机污染物的调控作用,是今后的发展方向。  相似文献   

14.
Distribution and equilibrium partitioning of metals (Cd, Cu, Cr, Fe, Ni, Pb, Mn, and Zn) between pore water and surface sediments at the Ilaje coast of Ondo State, Nigeria, were studied. The Ilaje River can be one of the interesting research locations because of its economic nature and history of oil pollution. Seasonal variations were observed to investigate possible variations in the availability of metals for organisms throughout the year. The concentrations in both sediments and pore water during the dry and wet seasons were as follows: Cu?>?Fe???Mn?>?Pb?>?Ni?>?Cr?>?Cd?>?Zn. The pore water–sediment partition coefficient (K p) showed that Zn and Cd were highly mobile while Fe and Cu have restricted mobility. Dissolved organic carbon (DOC) in pore water had a strong influence on mobility and bioavailability of all the metals (p?K oc), increased levels of Fe and Cu were linked to lithological origin. Concentrations of Pb and Ni were associated with petroleum-related sources. The significance of the field-based techniques for ecotoxicological purposes is discussed.  相似文献   

15.
Vertical profiles of physical, chemical and phytoplanktonic parameters are described, at the level of the thermocline, in the area of Banyuls-sur-Mer, France. The results show that the thermocline divides two masses of water: (1) Mediterranean surface water with low nutrient concentrations and a salinity below 38.00 ‰; (2) deep, nutrient-rich upwelled water (N?NO3 >3 μat-g·l-1, P?PO4>0.3 μat-g·l-1, >38.30 ‰ S), which comes from the upper limit of the Mediterranean intermediate water, usually located at the 200 m level. Consequently, conditions are suitable for high production rates at the bottom of the thermocline, where Chl a is above 0.5 mg·m-3; dominant species are Nitzschia delicatissima and N. pungens. A diagram is presented explaining the different effects of the pycnoclines on primary production: eutrophication at the pycnocline levels is the result of passive accumulation of phytoplankton and organic matter during sedimentation, and/or of reduced diffusion of nutrients from deep waters towards the surface.  相似文献   

16.
Pollution of water bodies by trace metals is an established problem and several studies have been conducted to deal with it. South Africa is amongst those countries whose water systems are most affected as a result of intensive mining activities. This research was dedicated to the development of an insoluble chelating polymer for use as an adsorbent for abstraction of metal ions from mining and industrial wastewaters. Polyethylenimine (PEI), well known for its metal chelating potential, was cross-linked by epichlorohydrin (ECH) in order to convert it into a water-insoluble form for direct use as an adsorbent. The binding affinity of the cross-linked polyethylenimine (CPEI) to heavy metal ions was assessed as well as its ability to be regenerated for re-use. CPEI exhibited good complexation ability to metal ions with high affinity to Cr and most divalent metal ions. The observed order of complexation was: Cr?>?Zn>?Fe?>?Ni?>?Mn?>?Pb. On the other hand, it showed very poor ability to bind oxo-anions such as SeO3 2? and AsO2 ? which has been attributed to the unavailability of suitable functional groups to interact with these ions.  相似文献   

17.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

18.
In this study, polychlorinated biphenyls (PCBs) were decomposed by low‐temperature heat treatment with metallic catalyst, and with metallic catalyst and a hydrogen source. Of the catalysts used, iron (Fe) was the most active catalyst for the decomposition of PCBs, and the decomposition was due to dechlorination. The addition of hydrogen sources accelerated the decomposition of PCBs in the presence of catalyst. Surface analysis of the catalyst using X‐ray photoelectron spectroscopy (XPS) suggested that the emitted chlorine was presumed to form metal chloride. The reactions of each homolog can be expressed by a successive first‐order reaction model. This means that a substituted chlorine is successively detached during this reaction. The overall decomposition rate in this reaction system was controlled by that of the lower chlorinated homologs. The decomposition rates with Fe and NaBH4 for the lower chlorinated homologs were about 10 times as fast as the rates with only Fe.  相似文献   

19.
Cell growth and iron uptake of the coastal marine diatoms Chaetoceros sociale and Thalassiosira weissflogii were studied in the presence of short-aged amorphous ferric hydroxide (am-Fe(III)) media. These were prepared by aging for 1 day, 3 days, and 3 weeks after adding a small amount of ferric iron acidic stock solution to autoclaved filtered seawater and were experimentally measured in culture experiments at 10°C for C. sociale and 20°C for T. weissflogii. The order of cell yields for both species was: 1-day aged am-Fe(III) >3-day aged am-Fe(III) >> 3-week aged am-Fe(III) media. The iron uptake rates by C. sociale during 0–1 day in 1 day and 3-day aged am-Fe(III) media were about two-thirds and one-fourths, respectively, lower than that in the direct Fe(III) input medium containing C. sociale into which an acidic Fe(III) stock solution was added directly. The longer aging time of am-Fe(III) in media results in reducing the supply of bioavailable iron in the media by the slower dissolution rate of am-Fe(III) with the longer aging time. These results suggest that the chemical and structural changes of freshly precipitated amorphous ferric hydroxide with short aging time affect their ability, such as iron solubility and dissolution rate to supply bioavailable iron for the phytoplankton growth. The chemical and structural conversion of solid iron phases with time is one of the most important processes in changing the supply of available iron to marine phytoplankton in estuarine and coastal waters and in iron fertilization experiments.  相似文献   

20.
通过盆栽试验的方法,研究了牛粪和植物种类对石灰性土壤中铁肥形态转化及其有效性的影响。结果表明,牛粪施用改变了土壤中铁(含外源铁)的有效性及其在各形态铁间的分配。从长期的观点来看,牛粪施用能提高土壤铁的有效性,有利于土壤铁有效供给的维持。与花生相比,油莱对土壤铁具有更高的利用和活化能力,种植油菜后,土壤交换态铁被耗竭,而有效铁、氧化锰结合态铁和无定形氧化铁结合态铁的含量明显提高。有机肥的合理施用和铁效率差异性植物间的轮作或间作是增加、维系土壤铁有效性的重要农艺措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号