首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) often occur in oil-contaminated soil, coke wastewater and domestic sludge; however, associated PAH degraders in these environments are not clear. Here we evaluated phenanthrene degradation potential in the mixed samples of above environments, and obtained a methanogenic community with different microbial profile compared to those from sediments. Phenanthrene was efficiently degraded (1.26 mg/L/d) and nonstoichiometric amount of methane was produced simultaneously. 16S rRNA gene sequencing demonstrated that bacterial populations were mainly associated with Comamonadaceae Nocardiaceae and Thermodesulfobiaceae, and that methanogenic archaea groups were dominated by Methanobacterium and Methanothermobacter. Substances such as hexane, hexadecane, benzene and glucose showed the most positive effects on phenanthrene degradation. Substrate utilization tests indicated that this culture could not utilize other PAHs. These analyses could offer us some suggestions on the putative phenanthrene-degrading microbes in such environments, and might help us develop strategies for the removal of PAHs from contaminated soil and sludge.
  相似文献   

3.
The aim of this study is to analyze the effect of salinity on polycyclic aromatic hydrocarbons (PAHs) biodegradation, community structure and naphthalene dioxygenase gene (ndo) diversity of a halophilic bacterial consortium with the denaturing gradient gel electrophoresis (DGGE) approach. The consortium was developed from oil-contaminated saline soil after enrichment for six times, using phenanthrene as the substrate. The prominent species in the bacterial consortium at all salinities were identified as halophilic bacteria Halomonas, Alcanivorax, Marinobacter, Idiomarina, Martelella and uncultured bacteria. The predominant microbes gradually changed associating with the saline concentration fluctuations ranging from 0.1% to 25% (w/v). Two ndo alpha subunits were dominant at salinities ranging from 0.1% to 20%, while not been clearly detected at 25% salinity. Consistently, the biodegradation occurred at salinities ranging from 0.1% to 20%, while no at 25% salinity, suggesting the two ndo genes played an important role in the degradation. The phylogenetic analysis revealed that both of the two ndo alpha subunits were related to the classic nah-like gene from Pseudomonas stutzeri AN10 and Pseudomonas aeruginosa PaK1, while one with identity of about 82% and the other one with identity of 90% at amino acid sequence level. We concluded that salinity greatly affected halophilic bacterial community structure and also the functional genes which were more related to biodegradation.
  相似文献   

4.
Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L–1Chlorella sp. and 3.45 g·L–1S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.
  相似文献   

5.
Wet deposition scavenges particles and particle-associated bacteria from the air column, but the impact of raindrops on various surfaces on Earth causes emission of surface-associated bacteria into the air column. Thus, after rainfall, these two mechanisms are expected to cause changes in airborne bacterial community composition (BCC). In this study, aerosol samples were collected at a suburban site in Seoul, Korea before and after three heavy rainfall events in April, May, and July 2011. BCC was investigated by pyrosequencing the 16S rRNA gene in aerosol samples. Interestingly, the relative abundance of non-spore forming Actinobacteria operational taxonomic units (OTUs) was always higher in post-rain aerosol samples. In particular, the absolute and relative abundances of airborne Propionibacteriaceae always increased after rainfall, whereas those of airborne Firmicutes, including Carnobacteriaceae and Clostridiales, consistently decreased. Marine bacterial sequences, which were temporally important in aerosol samples, also decreased after rainfall events. Further, increases in pathogen-like sequences were often observed in post-rain air samples. Rainfall events seemed to affect airborne BCCs by the combined action of the two mechanisms, with potentially adverse effects on human and plant health.
  相似文献   

6.
Petroleum hydrocarbons, mainly consisting of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), are considered as priority pollutants and biohazards in the environment, eventually affecting the ecosystem and human health. Though many previous studies have investigated the change of bacterial community and alkane degraders during the degradation of petroleum hydrocarbons, there is still lack of understanding on the impacts of soil alkane contamination level. In the present study, microcosms with different n-alkane contamination (1%, 3% and 5%) were set up and our results indicated a complete alkane degradation after 30 and 50 days in 1%- and 3%-alkane treatments, respectively. In all the treatments, alkanes with medium-chain length (C11-C14) were preferentially degraded by soil microbes, followed by C27-alkane in 3% and 5% treatments. Alkane contamination level slightly altered soil bacterial community, and the main change was the presence and abundance of dominant alkane degraders. Thermogemmatisporaceae, Gemmataceae and Thermodesulfovibrionaceae were highly related to the degradation of C14- and C27-alkanes in 5% treatment, but linked to alkanes with medium-chain (C11-C18) in 1% treatment and C21-alkane in 3% treatment, respectively. Additionally, we compared the abundance of three alkane-monooxygenase genes, e.g., alk_A, alk_P and alk_R. The abundance of alk_R gene was highest in soils, and alk_P gene was more correlated with alkane degradation efficiency, especially in 5% treatment. Our results suggested that alkane contamination level showed non-negligible effects on soil bacterial communities to some extents, and particularly shaped alkane degraders and degrading genes significantly. This study provides a better understanding on the response of alkane degraders and bacterial communities to soil alkane concentrations, which affects their biodegradation process.
  相似文献   

7.
To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.
  相似文献   

8.
The feasibility of using Phragmites australis-JS45 system in removing nitrobenzene from sediments was conducted. However, it was observed that nitrobenzene degraded rapidly and was removed completely within 20 days in native sediments, raising the possibility that indigenous microorganisms may play important roles in nitrobenzene degradation. Consequently, this study aimed to verify this possibility and investigate the potential nitrobenzene degraders among indigenous microorganisms in sediments. The abundance of inoculated strain JS45 and indigenous bacteria in sediments was quantified using real-time polymerase chain reaction. Furthermore, community structure of the indigenous bacteria was analyzed through high throughput sequencing based on Illumina MiSeq platform. The results showed that indigenous bacteria in native sediments were abundant, approximately 1014 CFU/g dry weight, which is about six orders of magnitude higher than that in fertile soils. In addition, the levels of indigenous Proteobacteria (Acinetobacter, Comamonadaceae_ uncultured, Pseudomonas, and Thauera) and Firmicutes (Clostridium, Sporacetigenium, Fusibacter, Youngiibacter, and Trichococcus) increased significantly during nitrobenzene removal. Their quantities sharply decreased after nitrobenzene was removed completely, except for Pseudomonas and Thauera. Based on the results, it can be concluded that indigenous microorganisms including Proteobacteria and Firmicutes can have great potential for removing nitrobenzene from sediments. Although P. australis - JS45 system was set up in an attempt to eliminate nitrobenzene from sediments, and the system did not meet the expectation. The findings still provide valuable information on enhancing nitrobenzene removal by optimizing the sediment conditions for better growth of indigenous Proteobacteria and Firmicutes.
  相似文献   

9.
Post-treatment impacts of a novel combined hydrogen peroxide (H2O2) oxidation and WOx/ZrO2 catalysis used for the removal of 1,4-dioxane and chlorinated volatile organic compound (CVOC) contaminants were investigated in soil and groundwater microbial community. This treatment train removed ~90% 1,4-dioxane regardless of initial concentrations of 1,4-dioxane and CVOCs. The Illumina Miseq platform and bioinformatics were used to study the changes to microbial community structure. This approach determined that dynamic shifts of microbiomes were associated with conditions specific to treatments as well as 1,4-dioxane and CVOCs mixtures. The biodiversity was observed to decrease only after oxidation under conditions that included high levels of 1,4-dioxane and CVOCs, but increased when 1,4-dioxane was present without CVOCs. WOx/ZrO2 catalysis reduced biodiversity across all conditions. Taxonomic classification demonstrated oxidative tolerance for members of the genera Massilia and Rhodococcus, while catalyst tolerance was observed for members of the genera Sphingomonas and Devosia. Linear discriminant analysis effect size was a useful statistical tool to highlight representative microbes, while the multidimensional analysis elucidated the separation of microbiomes under the low 1,4-dioxane-only condition from all other conditions containing CVOCs, as well as the differences of microbial population among original, post-oxidation, and post-catalysis states. The results of this study enhance our understanding of microbial community responses to a promising chemical treatment train, and the metagenomic analysis will help practitioners predict the microbial community status during the post-treatment period, which may have consequences for long-term management strategies that include additional biodegradation treatment or natural attenuation.
  相似文献   

10.
A laboratory scale up-flow anaerobic sludge bed (UASB) bioreactor fed with synthetic wastewater was operated with simultaneous methanogenesis and denitrification (SMD) granules for 235 days with a gradient decrease of C/N. Molecular cloning, qRT-PCR and T-RFLP were applied to study the methanogenic community structures in SMD granules and their changes in response to changing influent C/N. The results indicate that when C/N was 20:1, the methane production rate was fastest, and Methanosaetaceae and Methanobacteriaceae were the primary methanogens within the Archaea. The richness and evenness of methanogenic bacteria was best with the highest T-RFLP diversity index of 1.627 in the six granular sludge samples. When C/N was reduced from 20:1 to 5:1, the methanogenic activity of SMD granules decreased gradually, and the relative quantities of methanogens decreased from 36.5% to 10.9%. The abundance of Methanosaetaceae in Archaea increased from 64.5% to 84.2%, while that of Methanobacteriaceae decreased from 18.6% to 11.8%, and the richness and evenness of methanogens decreased along with the T-RFLP diversity index to 1.155, suggesting that the community structure reflected the succession to an unstable condition represented by high nitrate concentrations.
  相似文献   

11.
We assessed the contamination levels of Mn, Zn, Cr, Cu, Ni, Pb, As and Hg and the risks posed by these potentially harmful elements in top-soils around a municipal solid waste incinerator (MSWI).We collected 20 soil samples, with an average pH of 8.1, and another fly ash sample emitted from the MSWI to investigate the concentrations of these elements in soils. We determined the concentrations of these elements by inductively coupled plasma–optical emission spectrometer (ICP-OES), except for Hg, which we measured by AF-610B atomic fluorescence spectrometer (AFS). We assessed the risks of these elements through the use of geoaccumulation index (I geo), potential ecological risk index (RI), hazard quotient (HQ i ) and cancer risk (Risk i ). The results showed that concentrations of potentially harmful elements in soil were influenced by the wind direction, and the concentrations of most elements were higher in the area northwest of the MSWI, compared with the area southeast of the incinerator, with the exception of As; these results were in accordance with those results acquired from our contour maps. According to the I geo values, some soil samples were clearly polluted by Hg emissions. However, the health risk assessment indicated that the concentrations of Hg and other elements in soil did not pose non-carcinogenic risks to the local populations. This was also the case for the carcinogenic risks posed by As, Cr, and Ni. The carcinogenic risk posed by As was higher, in the range 6.49 × 10–6–9.58 × 10–6, but this was still considered to be an acceptable level of risk.
  相似文献   

12.
In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L–1 FeVO4 and 15 mmol·L–1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min–1), pH 7.0 (k = 0.0438 min–1), and pH 7.7 (k = 0.0434 min–1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.
  相似文献   

13.
Based on the activity level and technical information of coal-fired power-generating units (CFPGU) obtained in China from 2011 to 2015, we, 1) analyzed the time and spatial distribution of SO2 and NOx emission performance of CFPGUs in China; 2) studied the impact of installed capacity, sulfur content of coal combustion, and unit operation starting time on CFPGUs’ pollutant emission performance; and 3) proposed the SO2 and NOx emission performance standards for coal-fired power plants based on the best available control technology. Our results show that: 1) the larger the capacity of a CFPGU, the higher the control level and the faster the improvement; 2) the CFPGUs in the developed eastern regions had significantly lower SO2 and NOx emission performance values than those in other provinces due to better economic and technological development and higher environmental management levels; 3) the SO2 and NOx emission performance of the Chinese thermal power industry was significantly affected by the single-unit capacity, coal sulfur content, and unit operation starting time; and 4) based on the achievability analysis of best available pollution control technology, we believe that the CFPGUs’ SO2 emission performance reference values should be 0.34 g/kWh for active units in general areas, 0.8 g/kWh for active units in high-sulfur coal areas, and 0.13 g/kWh for newly built units and active units in key areas. In addition, the NOx emission performance reference values should be 0.35 g/kWh for active units in general areas and 0.175 g/kWh for new units and active units in key areas.
  相似文献   

14.
Ibuprofen (IBU) is widely used in the world as anti-inflammatory drug, which posed health risk to the environment. A bacterium capable of degrading IBU was isolated from activated sludge in a sewage treatment plant. According to its morphological, physiologic, and biochemical characteristics, as well as 16S rRNA sequence analysis, the strain was identified as Serratia marcescens BL1 (BL1). Degradation of IBU required the presence of primary substrate. After a five-day cultivation with yeast powder at 30°C and pH 7, the highest degradation (93.47%±2.37%) was achieved. The process of BL1 degrading IBU followed first-order reaction kinetics. The BL1 strain was applied to a small biological aerated filter (BAF) device to form a biofilm with activated sludge. IBU removal by the BAF was consistent with the results of static tests. The removal of IBU was 32.01% to 44.04% higher than for a BAF without BL1. The indigenous bacterial community was able to effectively remove CODMn (permanganate index) and ammonia nitrogen in the presence of BL1.
  相似文献   

15.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

16.
Electrochemically active bacteria (EAB) on the cathodes of microbial electrolysis cells (MECs) can remove metals from the catholyte, but the response of these indigenous EAB toward exotic metals has not been examined, particularly from the perspective of the co-presence of Cd(II) and Cr(VI) in a wastewater. Four known indigenous Cd-tolerant EAB of Ochrobactrum sp X1, Pseudomonas sp X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7 removed more Cd(II) and less Cr(VI) in the simultaneous presence of Cd(II) and Cr(VI), compared to the controls with individual Cd(II) or single Cr(VI). Response of these EAB toward exotic Cr(VI) was related to the associated subcellular metal distribution based on the sensing of fluorescence probes. EAB cell membrane harbored more cadmium than chromium and cytoplasm located more chromium than cadmium, among which the imaging of intracelluler Cr(III) ions increased over time, contrary to the decreased trend for Cd(II) ions. Compared to the controls with single Cd(II), exotic Cr(VI) decreased the imaging of Cd(II) ions in the EAB at an initial 2 h and negligibly affected thereafter. However, Cd(II) diminished the imaging of Cr (III) ions in the EAB over time, compared to the controls with individual Cr(VI). Current accelerated the harboring of cadmium at an initial 2 h and directed the accumulation of chromium in EAB over time. This study provides a viable approach for simultaneously quantitatively imaging Cd(II) and Cr (III) ions in EAB and thus gives valuable insights into the response of indigenous Cd-tolerant EAB toward exotic Cr(VI) in MECs.
  相似文献   

17.
We designed photoelectrochemical cells to achieve efficient oxidation of rhodamine B (RhB) without the need for photocatalyst or supporting electrolyte. RhB, the metal anode/cathode, and O2 formed an energy-relay structure, enabling the efficient formation of O 2 species under ultraviolet illumination. In a single-compartment cell (S cell) containing a titanium (Ti) anode, Ti cathode, and 10 mg·mL–1 RhB in water, the zero-order rate constant of the photoelectrochemical oxidation (kPEC) of RhB was 0.049 mg·L–1·min–1, while those of the photochemical and electrochemical oxidations of RhB were nearly zero. kPEC remained almost the same when 0.5 mol·L–1 Na2SO4 was included in the reactive solution, regardless of the increase in the photocurrent of the S cell. The kPEC of the illuminated anode compartment in the two-compartment cell, including a Ti anode, Ti cathode, and 10 mg·mL–1 RhB in water, was higher than that of the S cell. These results support a simple, eco-friendly, and energysaving method to realize the efficient degradation of RhB.
  相似文献   

18.
Biofilm is an effective simultaneous denitrification and in situ sludge reduction system, and the characteristics of different biofilm carrier have important implications for biofilm growth and in situ sludge reduction. In this study, the performance and mechanism of in situ sludge reduction were compared between FSC-SBBR and SC-SBBR with constructed by composite floating spherical carriers (FSC) and multi-faceted polyethylene suspension carriers (SC), respectively. The variation of EPS concentration indicated that the biofilm formation of FSC was faster than SC. Compared with SCSBBR, the FSC-SBBR yielded 0.16 g MLSS/g COD, almost 27.27% less sludge. The average removal rates of COD and NH4+-N were 93.39% and 96.66%, respectively, which were 5.21% and 1.43% higher than the average removal rate of SC-SBBR. Investigation of the mechanisms of sludge reduction revealed that, energy uncoupling metabolism and sludge decay were the main factors for sludge reduction inducing 43.13% and 49.65% less sludge, respectively, in FSC-SBBR. EEM fluorescence spectroscopy and SUVA analysis showed that the hydrolytic capacity of biofilm attached in FSC was stronger than those of SC, and the hydrolysis of EPS released more DOM contributed to lysis-cryptic growth metabolism. In additional, Bacteroidetes and Mizugakiibacter associated with sludge reduction were the dominant phylum and genus in FCS-SBBR. Thus, the effect of simultaneous in situ sludge reduction and pollutant removal in FSC-SBBR was better.
  相似文献   

19.
Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH 4 + , and then further convert NH 4 + to NO 3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.
  相似文献   

20.
Surface O3 production has a highly nonlinear relationship with its precursors. The spatial and temporal heterogeneity of O3-NO x -VOC-sensitivity regimes complicates the control-decision making. In this paper, the indicator method was used to establish the relationship between O3 sensitivity and assessment indicators. Six popular ratios indicating ozone-precursor sensitivity, HCHO/NO y , H2O2/ HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z , were evaluated based on the distribution of NOx- and VOC-sensitive regimes. WRF-Chem was used to study a serious ozone episode in fall over the Pearl River Delta (PRD). It was found that the south-west of the PRD is characterized by a VOCsensitive regime, while its north-east is NO x -sensitive, with a sharp transition area between the two regimes. All indicators produced good representations of the elevated ozone hours in the episode on 6 November 2009, with H2O2/HNO3 being the best indicator. The threshold sensitivity levels for HCHO/NOy, H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were estimated to be 0.41, 0.55, 10.2, 14.0, 19.1, and 0.38, respectively. Threshold intervals for the indicators H2O2/HNO3, O3/NO y , O3/NO z , O3/HNO3, and H2O2/NO z were able to identify more than 95% of VOC- and NO x -sensitive grids. The ozone episode on 16 November 16 2008 was used to independently verify the results, and it was found that only H2O2/HNO3 and H2O2/NO z were able to differentiate the ozone sensitivity regime well. Hence, these two ratios are suggested as the most appropriate indicators for identifying fall ozone sensitivity in the PRD. Since the species used for indicators have seasonal variation, the utility of those indicators for other seasons should be investigated in the future work.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号