首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Are penguins and seals in competition for Antarctic krill at South Georgia?   总被引:5,自引:0,他引:5  
The Antarctic fur seal (Arctocephalus gazella) and macaroni penguin (Eudyptes chrysolophus) are sympatric top predators that occur in the Southern Ocean around South Georgia where they are, respectively, the main mammal and bird consumers of Antarctic krill (Euphausia superba). In recent years the population of fur seals has increased, whereas that of macaroni penguins has declined. Both species feed on krill of similar size ranges, dive to similar depths and are restricted in their foraging range at least while provisioning their offspring. In this study we test the hypothesis that the increased fur seal population at South Georgia may have resulted in greater competition for the prey of macaroni penguins, leading to the decline in their population. We used: (1) satellite-tracking data to investigate the spatial separation of the Bird Island populations of these two species whilst at sea during the breeding seasons of 1999 and 2000 and (2) diet data to assess potential changes in their trophic niches between 1989 and 2000. Foraging ranges of the two species showed considerable overlap in both years, but the concentrations of foraging activity were significantly segregated spatially. The size of krill taken by both species was very similar, but over the last 12 years the prevalence of krill in their diets has diverged, with nowadays less krill in the diet of macaroni penguins than in that of Antarctic fur seals. Despite a significant degree of segregation in spatial resource use by the study populations, it is likely that the South Georgia populations of Antarctic fur seal and macaroni penguin exploit the same krill population during their breeding season. For explaining the opposing population trends of the two species, the relative contributions of independent differential response to interannual variation in krill availability and of interspecies competition cannot be resolved with available evidence. The likely competitive advantage of Antarctic fur seals will be enhanced as their population continues to increase, particularly in years of krill scarcity.  相似文献   

2.
We conducted a 6-year longitudinal behavioral and genetic investigation of a highly polygynous pinniped, the northern fur seal (Callorhinus ursinus), to determine the contribution of terrestrial polygyny to male fertilization success and to assess the occurrence of alternative mating strategies. Genetic samples from 37 adult males, 50 adult females, and 85 pups were collected and genotyped using five polymorphic microsatellite loci. Pup paternity was assigned using Cervus 2.0 at 99% confidence level. Paternity of 83 pups (98%) was assigned to terrestrial males who held territories or stayed temporarily in the study area during the breeding season when fertilization occurred. For 56 pups of which attendance records of their mothers were available, paternity of 45 pups (80%) was assigned to the associate males in whose territory their mothers stayed during the perioestrus period. In addition to defending breeding territories, territorial males have often been observed attempting to forcibly abduct adult females from adjacent territories (female stealing): We observed a total of 95 such cases, in which the stealers had significantly fewer females than the territorial males from whose territories they stole females. Our results indicate that terrestrial resource-defense polygyny is the major mating system in this species and that nonassociated paternity occurs mostly as a result of alternative mating strategies of less successful males. Male northern fur seals thus appear to adopt conditional alternative strategies that depend on their current social status to maximize their life-time reproductive success.  相似文献   

3.
Telemetry-based techniques have revealed the foraging patterns of many land breeding marine predators, especially during the summer breeding season. However, during the winter, when freed from the constraints of provisioning their young, such animals are more difficult to track. Using geolocation (Global Location Sensing, GLS) loggers and satellite tags (Platform Terminal Transmitters, PTTs) we successfully tracked 16 female Antarctic fur seals from South Georgia during the austral winter. The majority of females concentrated their winter foraging in the waters around the breeding beaches (90% of locations were within 510 km). However, as the winter progressed, two of the seals spent a number of months to the south, in and around the seasonal ice edge, and five seals migrated north and northwest from South Georgia. Four of these seals clearly crossed the Polar Front and two reached the Patagonian Shelf, apparently exploiting the continental shelf edge and the Subantarctic Front. Activity (saltwater immersion) data suggested that seals spent the majority of the winter months at sea but there were rare occasions when seals hauled out, either on land or on ice floes. We obtained data from two individuals that enabled us to compare the performance of PTT and GLS devices. For these seals the mean distance between GLS and PTT locations was 122 and 132 km. Although the recovery rates were low in this study, given improvements in attachment techniques, we have demonstrated that these micro-geolocation loggers provide an ideal tool with which to study the long-term dispersal of diving marine predators at larger scales. This is the first study to show that female fur seals from South Georgia remain at sea for almost the entirety of the non-breeding winter period. Using land-based observations it has been assumed that the fur seal population at South Georgia has little temporal overlap with the krill fishery that operates mostly during the winter months in this region. We have shown that a large proportion of the female fur seals that breed on South Georgia potentially remain in the vicinity of the island and are thus in direct competition with the region’s fisheries activities.  相似文献   

4.
Studies of the otariids (fur seals and sea lions), a highly sexually dimorphic group, have provided conflicting evidence of differential maternal expenditure in male and female offspring and, thus, suggestions that they conform to predictions of investment theory are equivocal. Since the mid-1970s, a diversity of research on Antarctic fur seals (Arctocephalus gazella) including studies of their reproductive ecology, lactation energetics, and foraging behaviour have been conducted at Bird Island, South Georgia that have resulted in one of the more complete and diverse data sets for any species of otariid. These long-term data were reviewed to determine whether there was any evidence to support that differential maternal expenditure occurred in Antarctic fur seals. Most of the data examined were collected during five consecutive austral summers from 1988 through 1992 and included years in which local food resources were abundant and scarce. We were unable to detect differences in the sex ratios of pups at birth or sex-biased differences in growth rates estimated from serial data, the number of foraging trips made, the duration of attendance ashore, diving behaviour, suckling behaviour, or milk consumption in any year and in the duration of foraging trips or age at weaning in 2 of 3 years. In addition, we found no evidence of greater reproductive costs between mothers with sons or daughters relative to their reproductive performance the following year. In contrast, sex-biased differences were only found in the duration of foraging trips in 1990, the age at weaning in 1988, and consistently in growth rates estimated from cross-sectional data. We suggest that differential maternal expenditure does not occur in Antarctic fur seals because male pups probably do not gain greater benefit from additional maternal expenditure than female pups. After weaning, males experience a period of rapid juvenile growth over 3–4 years during which time body mass nearly trebles. This growth will almost certainly be dependent upon available food resources then rather than on any maternal expenditure received over the first 4 months of life and, thus, the assumptions of the Trivers and Willard hypothesis are probably invalid for Antarctic fur seals. Received: 10 July 1996 / Accepted after revision: 3 March 1997  相似文献   

5.
Antarctic fur seals (Arctocephalus gazella) are major secondary consumers in the Southern Ocean, placing them in potential competition with commercial fisheries and requiring research to understand their seasonal habitat use. Using the data obtained during 14 shipboard surveys sampled on a fixed grid (150 K km2) during mid- to late summer, I quantified the spatial distribution and intra-seasonal variability of fur seal sightings relative to distance to land and hydrographic boundaries. I test the hypothesis that fur seals display an increase in their at-sea abundance during mid- to late summer near the Antarctic Peninsula as they prepare to take up wintering grounds. I also test whether abundances of their potential prey, krill and myctophids, exhibit intra-seasonal variability. During midsummer, high-abundance areas are located near major breeding colonies; however, during late summer, there is an order-of-magnitude increase in fur seal abundance, coinciding with an increase in the number of high-abundance areas located in Bransfield Strait. Coincidently, abundance of Euphausia superba decreased and the myctophid Electrona antarctica increased between mid- and late-summer surveys. High-abundance areas of fur seals are not associated with the southern Antarctic Circumpolar Current front but are concentrated within 100 km from land, potentially indicating the location of haul out and important coastal habitat use areas. The dynamic increase in the number and location of high-abundance areas during late summer represents a considerable amount of mammalian predators entering the Antarctic Peninsula marine ecosystem. This information is important for understanding the seasonal impact of fur seals on regional marine food webs and their potential interaction with the autumn–winter krill fishery.  相似文献   

6.
Southern elephant seals Mirounga leonina display extreme sexual dimorphism. In addition females show great variation in size and stored resources at parturition. Therefore they present an excellent opportunity for examination of responses of sex ratio to resource availability. We studied the relationships between the size of southern elephant seal females at parturition and the size and sex of their pups at South Georgia over four breeding seasons. We found a large individual variation in maternal post-partum mass (range 296–977 kg, n=151). Larger mothers gave birth to larger pups, irrespective of the sex of their pup. Male pups were on average 14% larger than females at birth and consequently more costly to bring to parturition. Our results suggest that female southern elephant seals must weigh more than 300 kg if they are to breed at all, and more than 380 kg if they are to give birth to a male pup. Above this threshold the proportion of males among offspring rapidly increases with maternal mass, and stabilizes at a level not significantly different from parity. These results show that smaller females of southern elephant seals vary offspring sex ratio in a way that is consistent with theories on adaptive offspring sex ratio. A smaller mother with a male foetus may benefit from terminating her pregnancy and allocating the resources she saves to her own growth. She could then give birth to and raise a larger pup in the subsequent season.  相似文献   

7.
Summary The southern elephant seal is among the most sexually dimorphic and polygynous of all mammals: males may be more than 10 times the weight of reproducing females and only the largest 2–3% of males are likely to breed. Current optimization theories of sexual selection predict that evolution would favor greater parental investment in individual males than in females. Because southern elephant seals represent an extreme of polygyny and sexual dimorphism, they might be expected to show a dramatic difference in parental investment in male and female pups. However, in a study of parental investment in elephant seals at South Georgia, using several different methods, we found no such difference after parturition. Mother-pup pairs were immobilized and weighed early in lactation, recaptured near the end of lactation and reweighed. A further 30 pups were weighed an average of five times during lactation to establish the shape of the growth curve and to serve as partial controls for the previous set of animals. Initial post-partum weight in females ranged from 346 to 803 kg (=506, SD=111, n=26). Pup birth weight was related to mothers' post-partum weight in female pups but small females often gave birth to large male pups. Male pups were significantly heavier at birth than females. However, this size difference did not persist. Male and female pups were suckled for the same period, grew at the same rate and were not significantly different in weight at weaning. Mothers lost weight at the same rate regardless of their pup's sex.  相似文献   

8.
Correctly quantifying the impacts of rare apex marine predators is essential to ecosystem-based approaches to fisheries management, where harvesting must be sustainable for targeted species and their dependent predators. This requires modelling the uncertainty in such processes as predator life history, seasonal abundance and movement, size-based predation, energetic requirements, and prey vulnerability. We combined these uncertainties to evaluate the predatory impact of transient leopard seals on a community of mesopredators (seals and penguins) and their prey at South Georgia, and assess the implications for an ecosystem-based management. The mesopredators are highly dependent on Antarctic krill and icefish, which are targeted by regional fisheries. We used a state-space formulation to combine (1) a mark-recapture open-population model and individual identification data to assess seasonally variable leopard seal arrival and departure dates, numbers, and residency times; (2) a size-based bioenergetic model; and (3) a size-based prey choice model from a diet analysis. Our models indicated that prey choice and consumption reflected seasonal changes in leopard seal population size and structure, size-selective predation and prey vulnerability. A population of 104 (90–125) leopard seals, of which 64% were juveniles, consumed less than 2% of the Antarctic fur seal pup production of the area (50% of total ingested energy, IE), but ca. 12–16% of the local gentoo penguin population (20% IE). Antarctic krill (28% IE) were the only observed food of leopard seal pups and supplemented the diet of older individuals. Direct impacts on krill and fish were negligible, but the “escapement” due to leopard seal predation on fur seal pups and penguins could be significant for the mackerel icefish fishery at South Georgia. These results suggest that: (1) rare apex predators like leopard seals may control, and may depend on, populations of mesopredators dependent on prey species targeted by fisheries; and (2) predatory impacts and community control may vary throughout the predator's geographic range, and differ across ecosystems and management areas, depending on the seasonal abundance of the prey and the predator's dispersal movements. This understanding is important to integrate the predator needs as natural mortality of its prey in models to set prey catch limits for fisheries. Reliable estimates of the variability of these needs are essential for a precautionary interpretation in the context of an ecosystem-based management.  相似文献   

9.
The breeding performance of higher predators has often been used to monitor fluctuations in the abundance of important prey stocks in marine ecosystems. The development of electronic data-loggers in recent years has also provided the opportunity of using wide-ranging marine animals to measure physical oceanographic conditions. In this study, time–depth recorders (TDRs) programmed to record temperature were deployed on female Antarctic fur seals (Arctocephalus gazella) at Bird Island, South Georgia (54°00′S; 38°02′W) during the breeding seasons 1994 to 1998. Temperature sensors had relatively slow response times, and thermal radiation errors occurred during the day when seals spent a large proportion of their time at the surface. Nevertheless, measurements provided temperature–depth profiles which were typical of the vertical stratification of the ocean. During the early stages of a foraging trip temperature increased, suggesting that fur seals travelled northwards from South Georgia towards the warmer waters of the Polar Front. In addition, higher temperatures were recorded by females that remained at sea for longer, implying that these individuals also travelled further. Mean sea-surface temperature (SST) increased from ∼1 to 4 °C from December to March and agreed with SSTs from ship, buoy and satellite. Future studies on marine mammals which combine satellite tracking with oceanographic measurements are likely to provide valuable information on biophysical aspects of the ocean. Received: 16 June 1998 / Accepted: 13 February 1999  相似文献   

10.
Hookworms in otariids are considered to meet the conditions and to fulfill the predictions set forth in the theoretical literature to define a likely case of host coexistence mediation by a shared pathogen. The intensity of infections, the prevalence of skin lesions and the morphometry of hookworms Uncinaria spp. were examined in South American sea lions and fur seals sampled along the Chilean and the Uruguayan coasts in spring and summer 1981 to 1991. In sympatric host populations from Uruguay, there were clear differences in intensity of infections, prevalence of skin lesions, and body size of the hookworms from the two host species. Sea lions from Chile, allopatric to fur seal populations, are less intensively infected and hookworms found in these sea lions have the smallest body size reported in otariids, while those from South American fur seals are the largest. Hookworms found in sea lion pups from populations sympatric to fur seals revealed intermediate values in intensity and in body size, and the sea lion pups had the highest prevalence of skin lesions. Other reports of hookworms in otariids show intermediate morphometry, following a general linear trend of differentiation in size. Consequently, they are considered to belong to the same, widely distributed species Uncinaria lucasi Stiles, 1901.  相似文献   

11.
Parent–offspring conflict theory is well supported by theoretical arguments. However, empirical observations are often difficult to interpret and have contradicted one of its most appealing predictions that parent and offspring should disagree over killing of nest or littermates. We present the first examples of deadly conflict between siblings of different cohorts. In Galápagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki), mothers often wean their single offspring at 2 years. This leads to a situation where up to 23% of all pups are born while the older sibling is still being nursed. Younger siblings are disadvantaged by being born lighter than neonates without older still dependent siblings. Pups born while an older sib is still dependent grow less in early life (fur seal) and suffer increased early mortality (both species) through direct aggression or scramble competition with the older sibling. This effect is much stronger in years of high sea surface temperature (El Niño) indicating low marine productivity and if the older offspring is a male. In both species, mothers interfere aggressively in this conflict by defending the younger offspring. In years of El Niño, intense resistance to maternal aggression by the older offspring happens frequently in the fur seal. Such resistance against weaning can induce maternal neglect of the newborn. Given substantial year to year variation in offspring growth, maternal aggression forces weaning in the older sibling only if it has reached sufficient size to support itself by foraging. In Galápagos fur seals, pups with older siblings can either represent insurance against loss of older offspring or extra reproductive value.  相似文献   

12.
For polygynous mammals with no paternal care, the number of offspring sired is often the sole measure of male reproductive success. The potential for polygyny is highest when resources or other environmental factors such as restricted breeding sites force females to aggregate. In these circumstances, males compete intensely for females and mating success may vary greatly among males, further intensifying selection for those traits that confer an advantage in reproduction. Hence, determinants of male success in competition for females are likely to be under strong sexual selection. Paternity analysis was used in conjunction with measures of age, site fidelity, and behavior during the breeding season to assess variance in male breeding success in Weddell seals (Leptonychotes weddellii) breeding at Turtle Rock, McMurdo Sound (77.727S, 166.85E) between 1997 and 2000. Paternity could be assigned to 177 pups at relaxed or 80% confidence level or 111 pups at strict or 95% confidence levels. Weddell seals at Turtle Rock show a modest degree of polygyny with the greatest number of pups sired by any individual male in a single season equalling 5 or ∼10% of the pups born. Over four consecutive years, most (89.2%) males sired at least one pup. In a generalized linear model (GLM), age and the age first seen at the study site as an adult were unrelated to mating success, but adult experience, either site-specific or elsewhere in McMurdo Sound, over the reproductive life span of males explained nearly 40% of variance in total mating success with 80% confidence and 24% of variance at 95% confidence. While learning where females are likely to be may enhance male reproductive success, aquatic mating reduces the ability of males to monopolize females, and thereby increases equity in mating success.  相似文献   

13.
A number of models have been proposed to provide adaptive explanations of sex-ratio variation in mammals. Two models have been applied commonly to primates and ungulates with varying success—the Trivers-Willard (TW) hypothesis, and the local resource competition (LRC) hypothesis. For polygynous, sexually dimorphic mammals, where males are larger and disperse more readily, these models predict opposite outcomes of sex-ratio adjustment within the same environmental context (high-resource years: TW—more sons; LRC—more daughters). However, many of the predictions of these two models can vary depending on factors influencing resource availability, such as environmental stochasticity, resource predictability, and population density. The New Zealand fur seal (Arctocephalus forsteri) is a polygynous mammal showing marked sexual dimorphism (larger males), with higher variation in male reproductive success expected. We provide clear evidence of male-biased sex ratios from a large sample of A. forsteri pups captured around South Island, New Zealand during 1996/1998, even after accounting for a sex bias in capture probability. The extent of the bias depended upon year and, in 1998, strong climatic perturbations (El Niño/Southern Oscillation, ENSO) probably reduced food availability. Significant male-biased sex ratios were found in all years; however, there was a significant decline in the male bias in 1998. There was no relationship between sex ratio and population density. We suggest that the sex-ratio bias resulted from the production of relatively more male pups. Under the density-independent scenario, the strong male bias in A. forsteri sex ratios is support for the TW model within an environment of high resource predictability. We suggest that some plasticity in the determination of pup sex among years is a mechanism by which A. forsteri females in New Zealand, and perhaps other otariid seals, can maximise fitness benefits when living in regions of high, yet apparently predictable, environmental variability. We also suggest that much of the inconsistency in the reported sex ratios for otariid seals results from the complex interaction of population density and environmental stochasticity influencing relative food availability over time.  相似文献   

14.
We tested the prediction that lactating fur seals (Arctocephalus gazella) at South Georgia will take prey of greater energy density with increasing distance of foraging from the colony. The study investigated the differences in diet of fur seals foraging within two regions, one near the breeding colony and the other at greater distance. Diet varied significantly in relation to foraging location. Dietary items of low quality were eaten in both regions but more food items with a high-energy content appeared in the diet of seals travelling to distant oceanic waters. We conclude that there is likely to be a trade-off between energy gain and distance travelled which enables female fur seals to maintain a relatively constant rate of energy delivery to their offspring irrespective of the distance travelled to find food.  相似文献   

15.
Shifts in the diet of top predators can be linked to changes in environmental conditions. In this study, we tested relationships between environmental variation and seasonal changes in diet of a top predator, the grey-headed albatross Thalassarche chrysostoma, breeding at Bird Island, South Georgia in an austral summer of 1999/2000. Oceanographic conditions in that year around South Georgia were abnormal (i.e. anomalously high sea surface temperature to a relative 19-year long-term mean). The diet of grey-headed albatrosses showed high seasonal variation, shifting from cephalopods (42.9 % by mass) in late February to Antarctic krill Euphausia superba (58.3 %) in late April, and grey-headed albatrosses breeding performance was low (16.8 %). This study shows these albatrosses did not manage to find sufficient alternative prey and highlight the risk to top predators if there is an increase in the frequency or severity of food shortages in Antarctic waters.  相似文献   

16.
The foraging areas and diets of the grey-headed albatross Thalassarche chrysostoma and wandering albatross Diomedea exulans were studied in March/April 2000 at Bird Island, South Georgia, during their respective chick-rearing and brood-guard periods. Oceanographically, March/April 2000 was abnormal, with warm conditions close to South Georgia. These conditions affected albatross foraging behaviour, particularly that of grey-headed albatrosses. Both species tended to forage in different areas of the ocean, with significant differences in trip durations. Grey-headed albatrosses (n=9) foraged mainly in Antarctic waters (predominantly shelf waters of the South Shetland Islands and Antarctic Peninsula, and also in oceanic waters around South Georgia), feeding mainly on krill (Euphausia superba; 77% by mass). Foraging trips lasted 13.3 days (range: 5–26 days), far longer than the 1–3 days found in previous studies. Only one grey-headed albatross was associated with the APF (Antarctic Polar Front), a reported foraging area in recent studies. Wandering albatrosses (n=9) foraged in Antarctic (South Georgia Shelf) and Antarctic Polar Frontal Zone (APFZ) waters, with trips of 1–4 days trip duration (usual for this species), feeding on fish (46% by mass) and cephalopods (32%). One bird was associated with the APF, and two birds foraged on the shelf/shelf break over the Patagonian shelf. These findings suggest that sea surface temperature anomalies, produced by movement of the APF closer to South Georgia or by eddies, may have had an effect on the foraging strategy of grey-headed albatrosses that year (the main prey of grey-headed albatrosses in previous studies, the ommastrephid Martialia hyadesi, is known to be associated with the APF). Also, when both albatross breeding periods overlap, their foraging areas were complementary, which reflected the prey taken.  相似文献   

17.
Antarctic fur seals (Arctocephalus gazella) were commercially exploited on the subantarctic island of South Georgia for over 100 years and nearly driven to extinction. Since the cessation of harvesting, however, their populations have rebounded, and they are now often considered a nuisance species whose impact on the terrestrial landscape should be mitigated. Any evaluation of their current population requires the context provided by their historic, pre-exploitation abundance, lest ecologists fall prey to shifting baseline syndrome in which their perspective on current abundance is compared only with an altered state resulting from past anthropogenic disturbance. Estimating pre-exploitation abundance is critical to defining species recovery and setting recovery targets, both of which are needed for the International Union for the Conservation of Nature's recent efforts to develop a green list of recovering species. To address this issue, we reconstructed the South Georgia fur seal harvest from 1786 to 1908 from ship logbooks and other historical records and interpolated missing harvest data as necessary with a generalized linear model fit to the historical record. Using an approximate Bayesian computation framework, harvest data, and a stochastic age-structured population model, we estimated the pre-exploitation abundance of Antarctic fur seals on South Georgia was 2.5 million females (95% CI 1.5–3.5 million). This estimate is similar to recent abundance estimates, and suggests current populations, and the ecological consequences of so many fur seals on the island, may be similar to conditions prior to human harvest. Although the historic archive on the fur sealing era is unavoidably patchy, the use of archival records is essential for reconstructing the past and, correspondingly, to understanding the present. Article impact statement: Defining species recovery requires an understanding of baseline population state, which can be estimated through statistical methods.  相似文献   

18.
Antarctic fur seals Arctocephalus gazella and macaroni penguins Eudyptes chrysolophus are the two main land-based krill Euphausia superba consumers in the northern Scotia Sea. Using a combination of concurrent at-sea (predator observations, net hauls and multi-frequency acoustics), and land-based (animal tracking and diet analysis) techniques, we examined variability in the foraging ecology of these sympatric top predators during the austral summer and autumn of 2004. Krill availability derived from acoustic surveys was low during summer, increasing in autumn. During the breeding season, krill occurred in 80% of fur seal diet samples, with fish remains in 37% of samples. Penguin diets contained the highest proportion of fish in over 20 years of routine monitoring (46% by mass; particularly the myctophid Electrona antarctica), with krill (33%) and amphipods (Themisto gaudichaudii; 21%) also occurring. When constrained by the need to return and feed their offspring both predator species foraged to the northwest of South Georgia, consistent with an area of high macrozooplankton biomass, but fur seals were apparently more successful at exploiting krill. When unconstrained by chick-rearing (during March) penguins foraged close to the Shag Rocks shelf-break, probably exploiting the high daytime biomass of fish in this area. Penguins and seals are able to respond differently to periods of reduced krill abundance (in terms of variability in diet and foraging behaviour), without detriment to the breeding success of either species. This highlights the importance of myctophid fish as an alternative trophic pathway for land-based predators in the Scotia Sea ecosystem.  相似文献   

19.
We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.  相似文献   

20.
Summary Lactation strategies in the two largest families of seals have been characterized as a phylogenetic dichotomy, with sea lions and fur seals (Otariidae) exhibiting foraging cycles and true seals (Phocidae) a strategy of fasting. We show that a lactating phocid, the harbor seal, Phoca vitulina, has a foraging cycle similar to that of otariids. Time-depth recorders attached to lactating harbor seal mothers revealed that 9 of 11 females began bouts of diving, averaging 12–40 m, by mid-lactation (12 days). During the remainder of lactation, females made an average of seven diving trips, lasting about 7 h. They returned to the rookery during the interval between successive bouts to nurse their pups. Diving was more frequent during daylight than at night and diving bouts increased in duration as lactation progressed. The diving behavior of females that had weaned their pups and previously collected data from stomach lavage, suggest that the bouts of diving represent successful foraging. We propose that the lactation strategy of the harbor seal is intermediate to that of the otariids and other phocids studied. The harbor seal has a foraging cycle like the otariids, but typically resembles other phocids in length of lactation, rate of mass gain in pups, and in milk fat content. As harbor seals are among the smallest phocids, and only slightly larger than most otariids, it seems likely that maternal size constrains the amount of stored energy harbor seal females can bring to the rookery, forcing them to start feeding during the lactation period.Correspondence to: D.J. Boness  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号