首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We have discovered that HNO3 and related species are released from the TiO2 surface into air in the TiO2 photocatalytic oxidation of NO2 (1 ppm) under continuous UV light illumination (1 mW cm−2) by dehumidifying the outlet gas of the reaction and analyzing the recovered condensate liquid by ion chromatography. The origin of the HNO3 recovered in the dehumidifier could not be explained by a simple desorption of HNO3 overproduced on the TiO2 surface. The produced HNO3 must be activated on the TiO2 surface and causing the unidentified reaction.  相似文献   

2.
Semiconductor photocatalysis is a solution to issues of environmental pollution and energy shortage because photocatalysis can use solar energy to degrade pollutants. The photocatalytic activity can be improved by using composites of ZnO and other semiconductors. Here, composites of ZnO and polymeric graphite-like C3N4 (g-C3N4) with high photocatalytic activities were prepared by microwave synthesis. Products were characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible and Fourier transform infrared spectroscopy. The photocatalytic degradation of Rhodamine B was tested under irradiation from a Xe lamp. Results show that adding graphite-like C3N4 promotes the photocatalytic activity of ZnO. Composites with 1.0 wt% g-C3N4 showed the best photodegradation efficiency, and the reaction average energy was approximately 33.71 kJ mol?1.  相似文献   

3.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

4.
First-principles calculations were performed to investigate the mechanism of Hg0 adsorption and oxidation on CeO2(111). Surface oxygen activated by the reduction of Ce4+ to Ce3+ was vital to Hg0 adsorption and oxidation processes. Hg0 was fully oxidized by the surface lattice oxygen on CeO2(111), without using any other oxidizing agents. HCl could dissociate and react with the Hg adatom on CeO2(111) to form adsorbed Hg–Cl or Cl–Hg–Cl groups, which promoted the desorption of oxidized Hg and prevented CeO2 catalyst deactivation. In contrast, O–H and H–O–H groups formed during HCl adsorption consumed the active surface oxygen and prohibited Hg oxidation. The consumed surface oxygen was replenished by adding O2 into the flue gas. We proposed that oxidized Hg desorption and maintenance of sufficient active surface oxygen were the rate-determining steps of Hg0 removal on CeO2-based catalysts. We believe that our thorough understanding and new insights into the mechanism of the Hg0 removal process will help provide guidelines for developing novel CeO2-based catalysts and enhance the Hg0 removal efficiency.
  相似文献   

5.
A solution of atrazine in a TiO2 suspension, an endocrine disruptor in natural water, was tentatively treated by microwave-assisted photocatalytic technique. The effects of mannitol, oxygen, humic acid, and hydrogen dioxide on the photodegradation rate were explored. The results could be deduced as follows: the photocatalytic degradation of atrazine fits the pseudo-first-order kinetic well with k = 0.0328 s?1, and ·OH was identified as the dominant reactant. Photodegradation of atrazine was hindered in the presence of humic acid, and the retardation effect increased as the concentration of humic acid increased. H2O2 displayed a significant negative influence on atrazine photocatalysis efficiency. Based on intermediates identified with gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-mass spectrometry (LC-MS/MS) techniques, the main degradation routes of atrazine are proposed.  相似文献   

6.
The photocatalytic degradation of a sulfonylurea herbicide, cinosulfuron, has been studied in TiO2 aqueous suspensions. A first order kinetic law was found. The influence of the initial concentration of cinosulfuron and of the initial radiant flux on the kinetics were evaluated. The identification of the intermediate products was based on high performance liquid chromatography coupled with mass spectrometry analyses (HPLC-MS). The mineralization of cinosulfuron was traced using ion chromatography and total organic carbon (TOC) measurements. These results indicate that the photocatalytic degradation of cinosulfuron leads to CO2, NO3 and SO4 2− as final products, and in addition cyanuric acid (C3H3O3N3), confirming previous results on triazinic ring-containing compounds. Electronic Publication  相似文献   

7.
In this work, Er3+:YAlO3/TiO2 composite was synthesized by a ultrasonic dispersion and liquid boil method. The Er3+:YAlO3/TiO2 composite and pure TiO2 powder were characterized by XRD. The degradation of different organic dyes was used to evaluate the photocatalytic activity of the Er3+:YAlO3/TiO2 composite. It is found that the photocatalytic activity of Er3+:YAlO3/TiO2 composite is much higher than that for the similar system with only TiO2. Moreover, this Er3+:YAlO3/TiO2 composite provides a new way to take advantage of TiO2 in sewage treatment aspects using solar light.  相似文献   

8.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m?s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.
  相似文献   

10.
Constructing realistic energy budgets for Antarctic krill, Euphausia superba, is hampered by the lack of data on the metabolic costs associated with swimming. In this study respiration rates and pleopod beating rates were measured at six current speeds. Pleopod beating rates increased linearly with current speed, reaching a maximum of 6 beats s–1 at 17 cm s–1. There was a concomitant linear increase in respiration rate, from 1.8 mg O2 gD–1 h–1 at 3 cm s–1 to 8.0 mg O2 gD–1 h–1 at 17 cm s–1. The size of the group tested (50, 100 and 300 krill) did not have a significant effect on pleopod beating rates or oxygen consumption (ANCOVA, F=0.264; P>0.05). The cost of transport reached a maximum of 75 J g–1 km–1 at 5 cm s–1, and then decreased with increasing current speed to 29 J g–1 km–1. When considered in light of energy budgets for E. superba, these data indicate that the cost of swimming could account for up to 73% of total daily metabolic expenditure during early summer.Communicated by G.F. Humphrey, Sydney  相似文献   

11.
Previous epidemiological studies have shown that dental fluorosis is endemic in the lowland, dry zone of Sri Lanka, which is considered to be an area in which excessive quantities of fluorides are present in the drinking water supplies. It has been found that kaolinitic clay forms a suitable raw material in the defluoridation of water.It is shown that there is a noticeable effect of selenium and media pH on the reactions involved in the interaction of fluoride with clay. In this study, 1 mM fluoride solutions containing SeO 3 2– (selenite) concentrations of 0 mM, 0.1 mM, 0.5 mM and 1 mM were used in the reactions with kaolinitic clay. The effect of pH was monitored in the range 4 to 8. It was observed that fluoride adsorption was maximum at a pH of 5.6 without either SeO 3 2– or SeO 4 2– , the adsorption capacity being 15.2 mol F g–1 clay. However, when the SeO 3 2– concentration was increased up to 0.5 mM at this optimum pH, the adsorption capacity reduced to 12.8 mol F g–1 clay. Monitoring of the effect of SeO 4 2– and media pH on fluoride adsorption showed that when the SeO 4 2– concentration increases from zero to 0.1 mM, there is a reduction of fluoride adsorption capacity. However, when the SeO 4 2– concentration is further increased from 0.1 mM to 1.0 mM, there was an increase in the fluoride adsorption capacity, indicating a more consistent effect of SeO 3 2– on fluoride-kaolinitic clay interaction than SeO 4 2– .Fluoride concentrations in drinking water supplies have a marked effect on dental health and the geochemistry of selenium appears to play an important role in the geochemical mobility of fluoride ions.  相似文献   

12.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

13.
A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.
  相似文献   

14.
Large areas of mangroves in India are heavily disturbed by cattle grazing, hypersalinity, and other human-induced impacts. In two disturbed Avicennia marina forests and two undisturbed A. marina and Rhizophora apiculata forests in the Pichavaram mangroves of the Vellar–Coleroon estuarine complex, southeast India, we measured the rates and pathways of microbial decomposition of soil organic matter to determine if human impact is altering biogeochemical activity within these stands. Rates of total carbon oxidation (TCOX) were higher in the undisturbed A. marina forest (mean 199 mol C m–2 year–1) than in the two impacted stands (43 and 79 mol C m–2 year–1); rates of total carbon oxidation in the R. apiculata forest averaged 75 mol C m–2 year–1. Sulphate reduction (range 21–319 mmol S m–2 day–1) was the major decomposition pathway (65–85% of TCOX), except at the most disturbed forest (30% of TCOX). Rates of sulphate reduction at all sites peaked in sub-surface soils to a depth of about 1 m, leading to little carbon burial (3–5% of total C input). There was some evidence of measurable iron and manganese reduction in association with tree roots. Rates of microbial activity were rapid in comparison with rates measured in other mangrove soils, reflecting high rates of phytoplankton production and organic matter retention in this lagoon. Human-induced disturbance creates a sharp zonation of dry, hypersaline soil overlying less saline, wetter soil, suppressing surface microbial and root growth. We conclude that this vertical alteration of soil characteristics and biogeochemistry shifts the cycling of nutrients between trees and microbes to a disequilibrium state, partly explaining why mangroves are stunted in these declining forests.Communicated by G. F. Humphrey, Sydney  相似文献   

15.
Here we demonstrate that an aqueous solution of the herbicide amitrole can be completely depolluted at pH 3.0 by anodic oxidation and electro-Fenton process. Anodic oxidation gives faster degradation with a boron-doped diamond anode than with a Pt anode. Electro-Fenton with a Pt anode and 1 mmol l –1 Fe2+ as catalyst yields the quickest depollution. Amitrole decay always follows a pseudo first-order reaction. NO3 and NH4+ are accumulated in the medium during mineralization, although volatile N-products are also formed. These environmentally friendly electrochemical treatments could be applied to the remediation of wastewaters containing amitrole.  相似文献   

16.
We grew marineSynechococcus Clones WH7803 and WH8018 at 150µE m–2 s–1 in dilute batch cultures with NH 4 + as the limiting nutrient. The maximal uptake capacities for NH 4 + and NO 3 - were measured in frequent experiments during log and stationary phases of growth. Clone WH7803, originally isolated from oceanic waters, had a specific uptake rate of NH 4 + that approximated the maximum (log phase) specific growth rate (ca ~ 0.025 h–1). NO 3 - uptake was observed only after nitrogen in the media was depleted; the NO 3 uptake capacity was ca 12% the capacity for NH 4 + uptake throughout the nitrogen depleted period. Growth was arrested upon nitrogen depletion, but resumed soon after reinoculation into fresh media, even after 5 d of starvation. Clone WH8018, originally isolated from coastal waters, revealed a five-fold enhancement in the NH 4 + uptake rate relative to growth rate at the time of nitrogen depletion. As nitrogen starvation proceeded, this enhancement was reduced. This clone, too, was able to take up NO 3 - once nitrogen in the media was depleted, but only after ca 20 h. Growth continued for a limited period during nitrogen depletion, but nitrogen-starved cells were slow to recover upon reinoculation into fresh media. We speculate that clonal differences may reflect differences in the molecular regulation of nitrogen assimilation.  相似文献   

17.
The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.
  相似文献   

18.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

20.
This investigation was carried out to determine the hydrogeochemical characteristics of the Kirkgeçit and Ozancik hot springs. The study areas are located northeast and southwest of the town of Çan, Çanakkale. During the investigation, geological maps of the hot springs and its surroundings were prepared, and hot waters and rock samples were collected from the study sites. The Paleogene–Neogene aged andesite, trachyandesite, andesitic tuff, silicified tuff and tuffites form the basement rocks in the Ozancik hot spring area. In the Kirkgeçit hot spring area, there are Lower Triassic aged mica and quartz schists at the basement rocks. The unit is covered by limestones and marbles of the same age. They are overlain by Quaternary alluvial deposits. A chemical analysis of the Kirkgeçit hot water indicates that it is rich in SO4 2– (1200.2 mg L–1), Cl (121.7 mg L–1), HCO3 (32.5 mg L–1), Na+ (494 mg L–1), K+ (30.2 mg L–1), Ca2+ (102 mg L–1), Mg2+ (15.2 mg L–1), and SiO2 (65.22 mg L–1). Chemical analysis of the Ozancik hot water indicates that it is rich in SO4 2– (575 mg L–1), Cl (193.2 mg L–1), HCO3 (98.5 mg L–1), Na+ (315 mg L–1), K+(7.248 mg L–1), Ca2+ (103 mg L–1), Mg2+ (0.274 mg L–1), and SiO2(43.20 mg L–1). The distribution of ions in the hot waters on the Schoeller diagram has an arrangement of r(Na++K+)>rCa2+>rMg2+ and r(SO4 2–)>rCl>r(HCO3 ). In addition, the inclusion of Fe2+, Cu2+, Cr3+, Mn2+, Ni2+ and Hg2+ in the hot water samples indicates potential natural inorganic contamination. The water analysis carried out following the ICPMS-200 technique was evaluated according to the World Health Organisation and Turkish Standards. The use and the effects of the hot water on human health are also discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号