首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Abstract: The number of individuals translocated and released as part of a reintroduction is often small, as is the final established population, because the reintroduction site is typically small. Small founder and small resulting populations can result in population bottlenecks, which are associated with increased rates of inbreeding and loss of genetic diversity, both of which can affect the long‐term viability of reintroduced populations. I used information derived from pedigrees of four monogamous bird species reintroduced onto two different islands (220 and 259 ha) in New Zealand to compare the pattern of inbreeding and loss of genetic diversity among the reintroduced populations. Although reintroduced populations founded with few individuals had higher levels of inbreeding, as predicted, other factors, including biased sex ratio and skewed breeding success, contributed to high levels of inbreeding and loss of genetic diversity. Of the 10–58 individuals released, 4–25 genetic founders contributed at least one living descendent and yielded approximately 3–11 founder–genome equivalents (number of genetic founders assuming an equal contribution of offspring and no random loss of alleles across generations) after seven breeding seasons. This range is much lower than the 20 founder–genome equivalents recommended for captive‐bred populations. Although the level of inbreeding in one reintroduced population initially reached three times that of a closely related species, the long‐term estimated rate of inbreeding of this one population was approximately one‐third that of the other species due to differences in carrying capacities of the respective reintroduction sites. The increasing number of reintroductions to suitable areas that are smaller than those I examined here suggests that it might be useful to develop long‐term strategies and guidelines for reintroduction programs, which would minimize inbreeding and maintain genetic diversity.  相似文献   

2.
Abstract: Studies evaluating the impact of inbreeding depression on population viability of threatened species tend to focus on the effects of inbreeding at a single life‐history stage (e.g., juvenile survival). We examined the effects of inbreeding across the full life‐history continuum, from survival up to adulthood, to subsequent reproductive success, and to the recruitment of second‐generation offspring, in wild Takahe ( Porphyrio hochstetteri ) by analyzing pedigree and fitness data collected over 21 breeding seasons. Although the effect size of inbreeding at individual life‐history stages was small, inbreeding depression accumulated across multiple life‐history stages and ultimately reduced long‐term fitness (i.e., successful recruitment of second‐generation offspring). The estimated total lethal equivalents (2B) summed across all life‐history stages were substantial (16.05, 95% CI 0.08–90.8) and equivalent to an 88% reduction in recruitment of second‐generation offspring for closely related pairs (e.g., sib–sib pairings) relative to unrelated pairs (according to the pedigree). A history of small population size in the Takahe could have contributed to partial purging of the genetic load and the low level of inbreeding depression detected at each single life‐history stage. Nevertheless, our results indicate that such “purged” populations can still exhibit substantial inbreeding depression, especially when small but negative fitness effects accumulate across the species’ life history. Because inbreeding depression can ultimately affect population viability of small, isolated populations, our results illustrate the importance of measuring the effects of inbreeding across the full life‐history continuum.  相似文献   

3.
The pink pigeon (Nesoenas mayeri) is an endemic species of Mauritius that has made a remarkable recovery after a severe population bottleneck in the 1970s to early 1990s. Prior to this bottleneck, an ex situ population was established from which captive-bred individuals were released into free-living subpopulations to increase population size and genetic variation. This conservation rescue led to rapid population recovery to 400–480 individuals, and the species was twice downlisted on the International Union for the Conservation of Nature (IUCN) Red List. We analyzed the impacts of the bottleneck and genetic rescue on neutral genetic variation during and after population recovery (1993–2008) with restriction site-associated sequencing, microsatellite analyses, and quantitative genetic analysis of studbook data of 1112 birds from zoos in Europe and the United States. We used computer simulations to study the predicted changes in genetic variation and population viability from the past into the future. Genetic variation declined rapidly, despite the population rebound, and the effective population size was approximately an order of magnitude smaller than census size. The species carried a high genetic load of circa 15 lethal equivalents for longevity. Our computer simulations predicted continued inbreeding will likely result in increased expression of deleterious mutations (i.e., a high realized load) and severe inbreeding depression. Without continued conservation actions, it is likely that the pink pigeon will go extinct in the wild within 100 years. Conservation rescue of the pink pigeon has been instrumental in the recovery of the free-living population. However, further genetic rescue with captive-bred birds from zoos is required to recover lost variation, reduce expression of harmful deleterious variation, and prevent extinction. The use of genomics and modeling data can inform IUCN assessments of the viability and extinction risk of species, and it helps in assessments of the conservation dependency of populations.  相似文献   

4.
Abstract:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus ) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.  相似文献   

5.
The depletion of shallow-water fish stocks through overexploitation has led to increasing fishing pressure on deep-sea species. Poor knowledge of the biology of commercially valuable deep-water fish has led to the serial depletion of stocks of several species across the world. Data regarding the genetic structure of deep-sea fish populations is important in determining the impact of overfishing on the overall genetic variability of species and can be used to estimate the likelihood of recolonisation of damaged populations through immigration of individuals from distant localities. Here the genetic structure of the commercially fished deep-water species the blackspot sea bream, Pagellus bogaraveo is investigated in the northeastern Atlantic using partial DNA sequencing of mitochondrial cytochrome b (cyt-b) and D-loop regions and genotyping of microsatellite loci. An absence of variation in cyt-b and low genetic variation in D-loop sequences potentially indicate that P. bogaraveo may have undergone a severe bottleneck in the past. Similar bottlenecks have been detected in other Atlantic species of fish and have possibly originated from the last glaciation. P. bogaraveo may have been particularly vulnerable to the effects of low temperature and a fall in sea level because stages of its life history occur in shallow water and coastal sites. However, there are other explanations of low genetic variability in populations of P. bogaraveo, such as a low population size and the impacts of fishing on population structure. Analysis of population structure using both D-loop and microsatellite analysis indicates low to moderate, but significant, genetic differentiation between populations at a regional level. This study supports studies on other deep-sea fish species that indicate that hydrographic or topographic barriers prevent dispersal of adults and/or larvae between populations at regional and oceanographic scales. The implications for the management and conservation of deep-sea fish populations are discussed.Communicated by J.P. Thorpe, Port Erin  相似文献   

6.
Summary One population of the midwife toad species Alytes obstetricans and one of A. cisternasii were studied in Spain for two consecutive reproductive seasons. Males that were most successful at hatching a high proportion of their clutch did not obtain more matings. On the other hand, in both species larger body size conferred a significant reproductive advantage on males. These results are explained mainly by the increased number of mates obtained by larger males, probably as a result of female choice. The selection gradients for body size in males (regressions of reproductive success on body size) were not significantly different within species between years nor between species within the same period of time. Hatching success (proportion of the eggs hatched) was not correlated with male body size in A. obstetricans. Hatching success in A. cisternasii was weakly negatively correlated with male body size in 1988.  相似文献   

7.
A central premise of conservation biology is that small populations suffer reduced viability through loss of genetic diversity and inbreeding. However, there is little evidence that variation in inbreeding impacts individual reproductive success within remnant populations of threatened taxa, largely due to problems associated with obtaining comprehensive pedigree information to estimate inbreeding. In the critically endangered black rhinoceros, a species that experienced severe demographic reductions, we used model selection to identify factors associated with variation in reproductive success (number of offspring). Factors examined as predictors of reproductive success were age, home range size, number of nearby mates, reserve location, and multilocus heterozygosity (a proxy for inbreeding). Multilocus heterozygosity predicted male reproductive success (p< 0.001, explained deviance >58%) and correlated with male home range size (p < 0.01, r2 > 44%). Such effects were not apparent in females, where reproductive success was determined by age (p < 0.01, explained deviance 34%) as females raise calves alone and choose between, rather than compete for, mates. This first report of a 3‐way association between an individual male's heterozygosity, reproductive output, and territory size in a large vertebrate is consistent with an asymmetry in the level of intrasexual competition and highlights the relevance of sex‐biased inbreeding for the management of many conservation‐priority species. Our results contrast with the idea that wild populations of threatened taxa may possess some inherent difference from most nonthreatened populations that necessitates the use of detailed pedigrees to study inbreeding effects. Despite substantial variance in male reproductive success, the increased fitness of more heterozygous males limits the loss of heterozygosity. Understanding how individual differences in genetic diversity mediate the outcome of intrasexual competition will be essential for effective management, particularly in enclosed populations, where individuals have restricted choice about home range location and where the reproductive impact of translocated animals will depend upon the background distribution in individual heterozygosity. Efectos de la Endogamia Sesgada por el Sexo sobre el Éxito Reproductivo y el Rango del Tamaño de Hábitat del Rinoceronte Negro, Especie en Peligro Crítico  相似文献   

8.
The Burmese roofed turtle (Batagur trivittata) is one of the world's most endangered turtles. Only one wild population remains in Myanmar. There are thought to be 12 breeding turtles in the wild. Conservation efforts for the species have raised >700 captive turtles since 2002, predominantly from eggs collected in the wild. We collected tissue samples from 445 individuals (approximately 40% of the turtles’ remaining global population), applied double‐digest restriction‐site associated DNA sequencing (ddRAD‐Seq), and obtained approximately 1500 unlinked genome‐wide single nucleotide polymorphisms. Individuals fell into 5 distinct genetic clusters, 4 of which represented full‐sib families. We inferred a low effective population size (≤10 individuals) but did not detect signs of severe inbreeding, possibly because the population bottleneck occurred recently. Two groups of 30 individuals from the captive pool that were the most genetically diverse were reintroduced to the wild, leading to an increase in the number of fertile eggs (n = 27) in the wild. Another 25 individuals, selected based on the same criteria, were transferred to the Singapore Zoo as an assurance colony. Our study demonstrates that the research‐to‐application gap in conservation can be bridged through application of cutting‐edge genomic methods.  相似文献   

9.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   

10.
The wolf (Canis lupus) is classified as endangered in Sweden by the Swedish Species Information Centre, which is the official authority for threat classification. The present population, which was founded in the early 1980s, descends from 5 individuals. It is isolated and highly inbred, and on average individuals are more related than siblings. Hunts have been used by Swedish authorities during 2010 and 2011 to reduce the population size to its upper tolerable level of 210 wolves. European Union (EU) biodiversity legislation requires all member states to promote a concept called “favourable conservation status” (FCS) for a series of species including the wolf. Swedish national policy stipulates maintenance of viable populations with sufficient levels of genetic variation of all naturally occurring species. Hunting to reduce wolf numbers in Sweden is currently not in line with national and EU policy agreements and will make genetically based FCS criteria less achievable for this species. We suggest that to reach FCS for the wolf in Sweden the following criteria need to be met: (1) a well‐connected, large, subdivided wolf population over Scandinavia, Finland, and the Russian Karelia‐Kola region should be reestablished, (2) genetically effective size (Ne) of this population is in the minimum range of Ne = 500–1000, (3) Sweden harbors a part of this total population that substantially contributes to the total Ne and that is large enough to not be classified as threatened genetically or according to IUCN criteria, and (4) average inbreeding levels in the Swedish population are <0.1. Efectos de la Cacería sobre el Estatus de Conservación Favorable de Lobos Suecos con Endogamia Alta  相似文献   

11.
Copepod recruitment and food composition: do diatoms affect hatching success?   总被引:12,自引:0,他引:12  
Laboratory experiments were conducted to differentiate between factors controlling the hatching success of copepod eggs. Factors that could affect viability of eggs; viz food quality, female condition and external factors were investigated. In a series of experiments the copepod Acartia tonsa Dana was fed several different diets while egg production and hatching success were monitored. The diet was analysed for fatty acid content as an indicator of food quality. Both egg production and hatching were found to be affected by the nutritional quality of the food. Hatching was also highly dependent on female fertility. External effects were tested by exposing eggs to diatom extracts. Negative effects were only evident at high extract concentrations, but disappeared when aeration was supplied to the solution. Oxygen measurements showed that failure to hatch was due to hypoxia in the extracts. No inhibitory or toxic effects of diatom cell components on hatching could be found.  相似文献   

12.
The hatching of the eggs of 3 Acartia species (A. tonsa, A. clausi, and Acartia sp. I) spawned in the laboratory and the eggs of Acartia (species undetermined) isolated from natural bottom sediments was examined under various environmental conditions (temperature, salinity and temperature combinations, oxygen concentration, illumination, and the presence of bottom mud). The range of temperature and salinity in which eggs hatched differed from one species to another. Egg hatching was inhibited under certain environmental conditions for all species, although egg viability under such conditions varied from one species to another. In relation to these findings, habitat separation of planktonic Acartia populations and the role of dormant eggs during their seasonal absence in the plankton of Southern California coastal waters are discussed.  相似文献   

13.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

14.
Abstract: Inbreeding depression is expected to affect populations of outbreeding mammals in inverse proportion to their population size and can affect whether small populations persist or go extinct. We used studbook records to examine the effect of inbreeding upon juvenile viability and litter size in two endangered species that have recently been reintroduced to the wild: the Mexican wolf ( Canis lupus baileyi ) and the red wolf ( C. rufus ). We found that neither juvenile viability nor litter size was lowered by inbreeding in either taxon. In fact, both captive breeding programs appear to have less lethal equivalents than the median estimate for mammals. We did find that year of birth was correlated with increasing viability in both taxa. We conclude that there is no evidence that inbreeding depression will prove a major obstacle to the success of either recovery effort.  相似文献   

15.
The effect of anoxia on the viability (as evidenced by hatching) of newly spawned and fully developed subitaneous eggs of three species of copepods, Acartia tonsa (Dana), Centropages hamatus (Lilljeborg), and Labidocera aestiva (Wheeler) was determined for eggs produced in the laboratory by adults collected from inshore waters of the northeastern Gulf of Mexico between January and August 1992. Hatching success decreased to 50% or less when eggs were exposed to oxygen concentrations <0.06 mll-1 for more than 12 d, except for newly spawned eggs of L. aestiva, which still showed 50% survival after 32 d of exposure to anoxia. For all three species, newly spawned eggs survived exposure to anoxia longer than fully developed eggs. The results indicate that the increasing occurrence of anoxia in estuarine and coastal waters could have a major impact on the population growth of these important food web organisms.  相似文献   

16.
The effect of temperature on the development and hatching of resting eggs of the Ponto-Caspian Cercopagis pengoi was studied experimentally in the Gulf of Finland, Baltic Sea. Morphological changes were monitored as the development of the resting eggs proceeded. Sexual reproduction of the C. pengoi population in the Gulf of Finland was evaluated by combining the data from hatching experiments and resting egg abundances in the sediment. Development time of resting eggs was dependent on temperature: increase in the temperature shortened the time needed until hatching. Hatching success was also dependent on incubation temperature. Almost sixfold increase in hatching success was detected when temperature increased two degrees above the storage temperature. Average resting egg abundances varied between 0.16 and 0.49 eggs cm−3 in the 0–6 cm sediment layer.  相似文献   

17.
Hatching of the eggs of four species of copepods, Acartia tonsa, Labidocera aestiva, Tortanus discaudatus, and Centropages hamatus was suppressed at oxygen concentrations less than 0.02 ml O2/l. When such eggs were subsequently exposed to normal oxygen concentrations, hatching varied among the species, indicating variability in the capacity of eggs to survive exposure to low oxygen. Incubation of eggs at low oxygen concentrations resulted in an increase in the duration of embryonic development. Experiments were conducted in closed systems and oxygen concentration was determined by thermal conductivity using gas chromatography.  相似文献   

18.
Abstract: The population of Rhinoceros unicornis in the Chitwan Valley, Nepal, was reduced to an estimated effective population size (Ne of 21–28 individuals (60–80 total animals) in 1962. Protein electrophoresis shows that heterozygosity remains very high in this population (Ho= 9.9%) despite its near extinction. We attribute this high heterozygosity to large Ne's prior to the population bottleneck, the recent occurrence of the bottleneck, and long generation time. These results illustrate the importance of considering historical demography and life history parameters when evaluating the possible genetic effects of bottlenecks in wild populations. They also offer support to recent arguments that the erosion of genetic diversity attributed to bottlenecks may be overemphasized.  相似文献   

19.
The influence of some environmental parameters in the regulation of hatching of halibut (Hippoglossus hippoglossus) embryos is reported. The progress of hatching was observed when light, oxygen and turbulence were varied. Environmental parameters influenced the induction of hatching, while the exit mechanism of halibut embryos was unaltered. Light arrests hatching of halibut eggs, and transfer of such eggs to darkness resulted in rapid and synchronous hatching. Hatching under different oxic conditions shows that better oxygen availability does not postpone the time of hatching in halibut. Oxygen seems therefore to have a minor role in the regulation of hatching in halibut. Induction of hatching was delayed under hypoxic conditions (15 mm Hg) compared to higher oxygen levels, but this probably reflects a minimal oxygen level needed for metabolism during hatching. Non-stationary water conditions delayed hatching for 1.5 d both in eggs incubated in turbulence, and in eggs subjected to turbulence at the time of hatching. Turbulence had an immediate inhibitory effect on hatching, but this inhibition was reversible under stationary conditions, under which hatching resumed after 150 to 250 min. We conclude that hatching in halibut occurs after sensory input from environmental factors which are integrated by the embryo before proceeding to hatch.  相似文献   

20.
Global increases in ultraviolet‐B radiation (UVBR) associated with stratospheric ozone depletion are potentially contributing to the decline of numerous amphibian species around the world. Exposure to UVBR alone reduces survival and induces a range of sublethal effects in embryonic and larval amphibians. When additional environmental stressors are present, UVBR can have compounding negative effects. Thus, examination of the effects of UVBR in the absence of other stressors may substantially underestimate its potential to affect amphibians in natural habitats. We examined the independent and interactive effects of increased UVBR and high conspecific density would have embryonic and larval striped marsh frogs (Limnodynastes peronii). We exposed individuals to a factorial combination of low and high UVBR levels and low, medium, and high densities of striped marsh frog tadpoles. The response variables were time to hatching, hatching success, posthatch survival, burst‐swimming performance of tadpoles (maximum instantaneous swim speed following an escape response), and size and morphology of tadpoles. Consistent with results of previous studies, we found that exposure to UVBR alone increased the time to hatching of embryos and reduced the burst‐swimming performance and size of tadpoles. Similarly, increasing conspecific density increased the time to hatching of embryos and reduced the size of tadpoles, but had no effect on burst‐swimming performance. The negative effect of UVBR on tadpole size was not apparent at high densities of tadpoles. This result suggests that tadpoles living at higher densities may invest relatively less energy in growth and thus have more energy to repair UVBR‐induced damage. Lower densities of conspecifics increased the negative effects of UVBR on developing amphibians. Thus, low‐density populations, which may include declining populations, may be particularly susceptible to the detrimental effects of increased UVBR and thus may be driven toward extinction faster than might be expected on the basis of results from single‐factor studies. Relaciones entre la Densidad Conespecífica y los Efectos de la Radiación Ultravioleta‐B sobre el Tamaño de Renacuajos de Limnodynastes peronei  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号