首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co‐occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community‐composition data. Composition‐based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment‐based models were built with soil chemistry, moisture content, above‐ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community‐composition data were the best predictors of both the site‐specific reproductive output of sown individuals and the site‐specific abundance of existing populations. Successful community‐based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community‐based modeling at scales relevant to conservation.  相似文献   

2.
Marine protected areas (MPAs) are used to protect species, communities, and their associated habitats, among other goals. Measuring MPA efficacy can be challenging, however, particularly when considering responses at the community level. We gathered 36 abundance and 14 biomass data sets on fish assemblages and used meta‐analysis to evaluate the ability of 22 distinct community diversity metrics to detect differences in community structure between MPAs and nearby control sites. We also considered the effects of 6 covariates—MPA size and age, MPA size and age interaction, latitude, total species richness, and level of protection—on each metric. Some common metrics, such as species richness and Shannon diversity, did not differ consistently between MPA and control sites, whereas other metrics, such as total abundance and biomass, were consistently different across studies. Metric responses derived from the biomass data sets were more consistent than those based on the abundance data sets, suggesting that community‐level biomass differs more predictably than abundance between MPA and control sites. Covariate analyses indicated that level of protection, latitude, MPA size, and the interaction between MPA size and age affect metric performance. These results highlight a handful of metrics, several of which are little known, that could be used to meet the increasing demand for community‐level indicators of MPA effectiveness.  相似文献   

3.
Forest die‐off around the world is expected to increase in coming decades as temperature increases due to climate change. Forest die‐off will likely affect understory plant communities, which have substantial influence on regional biological diversity, ecosystem function, and land–atmosphere interactions, but how die‐off alters these plant communities is largely unknown. We examined changes in understory plant communities following a widespread, drought‐induced die‐off of trembling aspen (Populus tremuloides) in the western United States. We assessed shrub and herbaceous cover and volume in quadrats in 55 plots located across a wide range of levels of aspen mortality. We measured species richness and composition of herbaceous plant communities by recording species presence and absence in 12 sets of paired (1 healthy, 1 dying) aspen plots. Although understory composition in healthy and dying stands was heterogeneous across the landscape, shrub abundance, cover, and volume were higher and abundance of herbaceous species, cover, and volume were lower in dying aspen stands. Shrub cover and volume increased from 2009 to 2011 in dying stands, which suggests that shrub growth and expansion is ongoing. Species richness of herbs declined by 23% in dying stands. Composition of herbs differed significantly between dying and healthy stands. Richness of non‐native species did not differ between stand types. The understory community in dying aspen stands was not similar to other shrub‐dominated plant communities in the region and may constitute a novel community. Our results suggest that changes in understory plant communities as forests die off could be a significant indirect effect of climate change on biological diversity and forest communities. Efectos de la Mortalidad Extensiva de Álamos Inducida por Sequía sobre Plantas del Sotobosque  相似文献   

4.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

5.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

6.
Abstract: Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species’ ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate‐change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub‐Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub‐Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate‐change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously.  相似文献   

7.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

8.
Abstract: Searching for indicator taxa representative of diverse assemblages, such as arthropods, is an important objective of many conservation studies. We evaluated the impacts of a wide gradient of disturbance in Gabon on a range of arthropod assemblages representing different feeding guilds. We examined 4 × 105 arthropod individuals from which 21 focal taxa were separated into 1534 morphospecies. Replication included the understory of 3 sites in each of 4 different stages of forest succession and land use (i.e., habitats) after logging (old and young forests, savanna, and gardens). We used 3 complementary sampling methods to survey sites throughout the year. Overall differences in arthropod abundance and diversity were greatest between forest and open habitats, and cleared forest invaded by savanna had the lowest abundance and diversity. The magnitude of faunal differences was much smaller between old and young forests. When considered at this local scale, anthropogenic modification of habitats did not result in a monotonous decline of diversity because many herbivore pests and their associated predators and parasitoids were abundant and diverse in gardens, where plant productivity was kept artificially high year‐round through watering and crop rotation. We used a variety of response variables to measure the strength of correlations across survey locations among focal taxa. These could be ranked as follows in terms of decreasing number of significant correlations: species turnover > abundance > observed species richness > estimated species richness > percentage of site‐specific species. The number of significant correlations was generally low and apparently unrelated to taxonomy or guild structure. Our results emphasize the value of reporting species turnover in conservation studies, as opposed to simply measuring species richness, and that the search for indicator taxa is elusive in the tropics. One promising alternative might be to consider “predictor sets” of a small number of taxa representative of different functional groups, as identified in our study.  相似文献   

9.
Abstract: Although there are many indicators of endangerment (i.e., whether populations or species meet criteria that justify conservation action), their reliability has rarely been tested. Such indicators may fail to identify that a population or species meets criteria for conservation action (false negative) or may incorrectly show that such criteria have been met (false positive). To quantify the rate of both types of error for 20 commonly used indicators of declining abundance (threat indicators), we used receiver operating characteristic curves derived from historical (1938–2007) data for 18 sockeye salmon (Oncorhynchus nerka) populations in the Fraser River, British Columbia, Canada. We retrospectively determined each population's yearly status (reflected by change in abundance over time) on the basis of each indicator. We then compared that population's status in a given year with the status in subsequent years (determined by the magnitude of decline in abundance across those years). For each sockeye population, we calculated how often each indicator of past status matched subsequent status. No single threat indicator provided error‐free estimates of status, but indicators that reflected the extent (i.e., magnitude) of past decline in abundance (through comparison of current abundance with some historical baseline abundance) tended to better reflect status in subsequent years than the rate of decline over the previous 3 generations (a widely used indicator). We recommend that when possible, the reliability of various threat indicators be evaluated with empirical analyses before such indicators are used to determine the need for conservation action. These indicators should include estimates from the entire data set to take into account a historical baseline.  相似文献   

10.
Successful conservation of large terrestrial mammals (wildlife) on private lands requires that landowners be empowered to manage wildlife so that benefits outweigh the costs. Laikipia County, Kenya, is predominantly unfenced, and the land uses in the area allow wide‐ranging wildlife to move freely between different management systems on private land. We used camera traps to sample large mammals associated with 4 different management systems (rhinoceros sanctuaries, no livestock; conservancies, intermediate stocking level; fenced ranches, high stocking level; and group ranches, high stocking level, no fencing, pastoralist clan ownership) to examine whether management and stocking levels affect wildlife. We deployed cameras at 522 locations across 8 properties from January 2008 through October 2010 and used the photographs taken during this period to estimate richness, occupancy, and relative abundance of species. Species richness was highest in conservancies and sanctuaries and lowest on fenced and group ranches. Occupancy estimates were, on average, 2 and 5 times higher in sanctuaries and conservancies as on fenced and group ranches, respectively. Nineteen species on fenced ranches and 25 species on group ranches were considered uncommon (occupancy < 0.1). The relative abundance of most species was highest or second highest in sanctuaries and conservancies. Lack of rights to manage and utilize wildlife and uncertain land tenure dampen many owners’ incentives to tolerate wildlife. We suggest national conservation strategies consider landscape‐level approaches to land‐use planning that aim to increase conserved areas by providing landowners with incentives to tolerate wildlife. Possible incentives include improving access to ecotourism benefits, forging agreements to maintain wildlife habitat and corridors, resolving land‐ownership conflicts, restoring degraded rangelands, expanding opportunities for grazing leases, and allowing direct benefits to landowners through wildlife harvesting. Efectos del Uso Privado de Suelo, Manejo de Ganado y la Tolerancia Humana sobre la Diversidad, Distribución y Abundancia de Mamíferos Mayores Africanos  相似文献   

11.
Abstract: Estimating the abundance of migratory species is difficult because sources of variability differ substantially among species and populations. Recently developed state‐space models address this variability issue by directly modeling both environmental and measurement error, although their efficacy in detecting declines is relatively untested for empirical data. We applied state‐space modeling, generalized least squares (with autoregression error structure), and standard linear regression to data on abundance of wetland birds (shorebirds and terns) at Moreton Bay in southeast Queensland, Australia. There are internationally significant numbers of 8 species of waterbirds in the bay, and it is a major terminus of the large East Asian‐Australasian Flyway. In our analyses, we considered 22 migrant and 8 resident species. State‐space models identified abundances of 7 species of migrants as significantly declining and abundance of one species as significantly increasing. Declines in migrant abundance over 15 years were 43–79%. Generalized least squares with an autoregressive error structure showed abundance changes in 11 species, and standard linear regression showed abundance changes in 15 species. The higher power of the regression models meant they detected more declines, but they also were associated with a higher rate of false detections. If the declines in Moreton Bay are consistent with trends from other sites across the flyway as a whole, then a large number of species are in significant decline.  相似文献   

12.
Abstract: Some conservationists argue for a focused effort to protect the most critically endangered species, and others suggest a large‐scale endeavor to safeguard common species across large areas. Similar arguments are applicable to the distribution of scientific effort among species. Should conservation scientists focus research efforts on threatened species, common species, or do all species deserve equal attention? We assessed the scientific equity among 1909 mammals, birds, reptiles, and amphibians of southern Africa by relating the number of papers written about each species to their status on the International Union for Conservation of Nature Red List. Threatened large mammals and reptiles had more papers written about them than their nonthreatened counterparts, whereas threatened small mammals and amphibians received less attention than nonthreatened species. Threatened birds received an intermediate amount of attention in the scientific literature. Thus, threat status appears to drive scientific effort among some animal groups, whereas other factors (e.g., pest management and commercial interest) appear to dictate scientific investment in particular species of other groups. Furthermore, the scientific investment per species differed greatly between groups—the mean number of papers per threatened large mammal eclipsed that of threatened reptiles, birds, small mammals, and amphibians by 2.6‐, 15‐, 216‐, and more than 500‐fold, respectively. Thus, in the eyes of science, all species are not created equal. A few species commanded a great proportion of scientific attention, whereas for many species information that might inform conservation is virtually nonexistent.  相似文献   

13.
Abstract: The effects of human activities in forests are often examined in the context of habitat conversion. Changes in habitat structure and composition are also associated with increases in the activity of people with vehicles and equipment, which results in increases in anthropogenic noise. Anthropogenic noise may reduce habitat quality for many species, particularly those that rely on acoustic signals for communication. We compared the density and occupancy rate of forest passerines close to versus far from noise‐generating compressor stations and noiseless well pads in the boreal forest of Alberta, Canada. Using distance‐based sampling, we found that areas near noiseless energy facilities had a total passerine density 1.5 times higher than areas near noise‐producing energy sites. The White‐throated Sparrow (Zonotrichia albicollis), Yellow‐rumped Warbler (Dendroica coronata), and Red‐eyed Vireo (Vireo olivaceus) were less dense in noisy areas. We used repeat sampling to estimate occupancy rate for 23 additional species. Seven had lower conditional or unconditional occupancy rates near noise‐generating facilities. One‐third of the species examined showed patterns that supported the hypothesis that abundance is influenced by anthropogenic noise. An additional 4 species responded negatively to edge effects. To mitigate existing noise impacts on birds would require approximately $175 million. The merits of such an effort relative to other reclamation actions are discussed. Nevertheless, given the $100 billion energy‐sector investment planned for the boreal forest in the next 10 years, including noise suppression technology at the outset of construction, makes noise mitigation a cost‐effective best‐management practice that might help conserve high‐quality habitat for boreal birds.  相似文献   

14.
Abstract: Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost‐function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species.  相似文献   

15.
Many objectives motivate ecological restoration, including improving vegetation condition, increasing the range and abundance of threatened species, and improving species richness and diversity. Although models have been used to examine the outcomes of ecological restoration, few researchers have attempted to develop models to account for multiple, potentially competing objectives. We developed a combined state‐and‐transition, species‐distribution model to predict the effects of restoration actions on vegetation condition and extent, bird diversity, and the distribution of several bird species in southeastern Australian woodlands. The actions reflected several management objectives. We then validated the models against an independent data set and investigated how the best management decision might change when objectives were valued differently. We also used model results to identify effective restoration options for vegetation and bird species under a constrained budget. In the examples we evaluated, no one action (improving vegetation condition and extent, increasing bird diversity, or increasing the probability of occurrence for threatened species) provided the best outcome across all objectives. In agricultural lands, the optimal management actions for promoting the occurrence of the Brown Treecreeper (Climacteris picumnus), an iconic threatened species, resulted in little improvement in the extent of the vegetation and a high probability of decreased vegetation condition. This result highlights that the best management action in any situation depends on how much the different objectives are valued. In our example scenario, no management or weed control were most likely to be the best management options to satisfy multiple restoration objectives. Our approach to exploring trade‐offs in management outcomes through integrated modeling and structured decision‐support approaches has wide application for situations in which trade‐offs exist between competing conservation objectives.  相似文献   

16.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species.  相似文献   

17.
The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating their population size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Lathamus discolor). We compared estimates of occupied habitat derived from dynamic presence‐background (i.e., presence‐only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine‐resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine‐resolution data). The occupancy models produced significantly (P < 0.001) smaller (up to an order of magnitude) and more spatially discrete estimates of the total occupied area than climate‐based models. The spatial location and extent of the total area occupied with the occupancy models was highly variable between years (131 and 1498 km2). Estimates accounting for the area of functional habitats were significantly smaller (2–58% [SD 16]) than estimates based only on the total area occupied. An increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists.  相似文献   

18.
Abstract: Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200–3700 m). We used visual encounter surveys to sample stream‐dwelling and arboreal species and leaf‐litter plots to sample terrestrial‐breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream‐dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial‐breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream‐dwelling and arboreal frogs were lower in the combined 2008–2009 period than in 1999, whereas densities of frogs in leaf‐litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness.  相似文献   

19.
The current loss of biodiversity has put 50,000 plant species at an elevated risk of extinction worldwide. Conserving at-risk species is often complicated by covariance or nonadditivity among threats, which makes it difficult to determine optimal management strategies. We sought to demographically quantify covariance and nonadditive effects of more threats on more rare plant species than ever attempted in a single analysis. We used 1082 population reports from 186 populations across 3 U.S. states of 27 rare, herbaceous plant species collected over 15 years by citizen scientists. We used a linear mixed-effects model with 4 threats and their interactions as fixed predictors, species as a random predictor, and annual growth rates as the response. We found a significant 3-way interaction on annual growth rates; rare plant population sizes were reduced by 46% during the time immediately after disturbance when populations were also browsed by deer (Odocoileus virginianus) and had high levels of encroachment by woody species. This nonadditive effect should be considered a major threat to the persistence of rare plant species. Our results highlight the need for comprehensive, multithreat assessments to determine optimal conservation actions.  相似文献   

20.
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark‐monitoring data on large scales (100s–1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species‐level models had higher accuracy (? ≥ 0.69) and deviance explained (≥48%) than our order‐level model (? = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species‐specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species‐focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non‐extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号