首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  The ethical, legal, and social significance of the U.S. Endangered Species Act of 1973 (ESA) is widely appreciated. Much of the significance of the act arises from the legal definitions that the act provides for the terms threatened species and endangered species. The meanings of these terms are important because they give legal meaning to the concept of a recovered species. Unfortunately, the meanings of these terms are often misapprehended and rarely subjected to formal analysis. We analyzed the legal meaning of recovered species and illustrate key points with details from "recovery" efforts for the gray wolf ( Canis lupus ). We focused on interpreting the phrase "significant portion of its range," which is part of the legal definition of endangered species. We argue that recovery and endangerment entail a fundamentally normative dimension (i.e., specifying conditions of endangerment) and a fundamentally scientific dimension (i.e., determining whether a species meets the conditions of endangerment). Specifying conditions for endangerment is largely normative because it judges risks of extinction to be either acceptable or unacceptable. Like many other laws that specify what is unacceptable, the ESA largely specifies the conditions that constitute unacceptable extinction risk. The ESA specifies unacceptable risks of extinction by defining endangered species in terms of the portion of a species' range over which a species is "in danger of extinction." Our analysis indicated that (1) legal recovery entails much more than the scientific notion of population viability, (2) most efforts to recover endangered species are grossly inadequate, and (3) many unlisted species meet the legal definition of an endangered or threatened species.  相似文献   

2.
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.  相似文献   

3.
Like many federal statutes, the U.S. Endangered Species Act (ESA) contains vague or ambiguous language. The meaning imparted to the ESA's unclear language can profoundly impact the fates of endangered and threatened species. Hence, conservation scientists should contribute to the interpretation of the ESA when vague or ambiguous language contains scientific words or refers to scientific concepts. Scientists need to know at least these 2 facts about statutory interpretation: statutory interpretation is subjective and the potential influence of normative values results in different expectations for the parties involved. With the possible exception of judges, all conventional participants in statutory interpretation are serving their own interests, advocating for their preferred policies, or biased. Hence, scientists can play a unique role by informing the interpretative process with objective, policy‐neutral information. Conversely, scientists may act as advocates for their preferred interpretation of unclear statutory language. The different roles scientists might play in statutory interpretation raise the issues of advocacy and competency. Advocating for a preferred statutory interpretation is legitimate political behavior by scientists, but statutory interpretation can be strongly influenced by normative values. Therefore, scientists must be careful not to commit stealth policy advocacy. Most conservation scientists lack demonstrable competence in statutory interpretation and therefore should consult or collaborate with lawyers when interpreting statutes. Professional scientific societies are widely perceived by the public as unbiased sources of objective information. Therefore, professional scientific societies should remain policy neutral and present all interpretations of unclear statutory language; explain the semantics and science both supporting and contradicting each interpretation; and describe the potential consequences of implementing each interpretation. A review of scientists’ interpretations of the phrase “significant portion of its range” in the ESA is used to critique the role of scientists and professional societies in statutory interpretation.  相似文献   

4.
For species listed under the U.S. Endangered Species Act (ESA), the U.S. Fish and Wildlife Service and National Marine Fisheries Service are tasked with writing recovery plans that include “objective, measurable criteria” that define when a species is no longer at risk of extinction, but neither the act itself nor agency guidelines provide an explicit definition of objective, measurable criteria. Past reviews of recovery plans, including one published in 2012, show that many criteria lack quantitative metrics with clear biological rationale and are not meeting the measureable and objective mandate. I reviewed how objective, measureable criteria have been defined implicitly and explicitly in peer‐reviewed literature, the ESA, other U.S. statutes, and legal decisions. Based on a synthesis of these sources, I propose the following 6 standards be used as minimum requirements for objective, measurable criteria: contain a quantitative threshold with calculable units, stipulate a timeframe over which they must be met, explicitly define the spatial extent or population to which they apply, specify a sampling procedure that includes sample size, specify a statistical significance level, and include justification by providing scientific evidence that the criteria define a species whose extinction risk has been reduced to the desired level. To meet these 6 standards, I suggest that recovery plans be explicitly guided by and organized around a population viability modeling framework even if data or agency resources are too limited to complete a viability model. When data and resources are available, recovery criteria can be developed from the population viability model results, but when data and resources are insufficient for model implementation, extinction risk thresholds can be used as criteria. A recovery‐planning approach centered on viability modeling will also yield appropriately focused data‐acquisition and monitoring plans and will facilitate a seamless transition from recovery planning to delisting. Un Marco de Referencia para Desarrollar Criterios de Recuperación Objetivos y Medibles para Especies Amenazadas y en Peligro  相似文献   

5.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

6.
Recovery plans for species listed under the U.S. Endangered Species Act are required to specify measurable criteria that can be used to determine when the species can be delisted. For the 642 listed endangered and threatened plant species that have recovery plans, we applied recursive partitioning methods to test whether the number of individuals or populations required for delisting can be predicted on the basis of distributional and biological traits, previous abundance at multiple time steps, or a combination of traits and previous abundances. We also tested listing status (threatened or endangered) and the year the recovery plan was written as predictors of recovery criteria. We analyzed separately recovery criteria that were stated as number of populations and as number of individuals (population‐based and individual‐based criteria, respectively). Previous abundances alone were relatively good predictors of population‐based recovery criteria. Fewer populations, but a greater proportion of historically known populations, were required to delist species that had few populations at listing compared with species that had more populations at listing. Previous abundances were also good predictors of individual‐based delisting criteria when models included both abundances and traits. The physiographic division in which the species occur was also a good predictor of individual‐based criteria. Our results suggest managers are relying on previous abundances and patterns of decline as guidelines for setting recovery criteria. This may be justifiable in that previous abundances inform managers of the effects of both intrinsic traits and extrinsic threats that interact and determine extinction risk. Predicción de Criterios de Recuperación para Especies de Plantas en Peligro y Amenazadas con Base en Abundancias Pasadas y Atributos Biológicos  相似文献   

7.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

8.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

9.
In recent decades, there has been an increasing emphasis on proactive efforts to conserve species being considered for listing under the U.S. Endangered Species Act (ESA) before they are listed (i.e., preemptive conservation). These efforts, which depend on voluntary actions by public and private land managers across the species’ range, aim to conserve species while avoiding regulatory costs associated with ESA listing. We collected data for a set of social, economic, environmental, and institutional factors that we hypothesized would influence voluntary decisions to promote or inhibit preemptive conservation of species under consideration for ESA listing. We used logistic regression to estimate the association of these factors with preemptive conservation outcomes based on data for a set of species that entered the ESA listing process and were either officially listed (n = 314) or preemptively conserved (n = 73) from 1996 to 2018. Factors significantly associated with precluded listing due to preemptive conservation included high baseline conservation status, low proportion of private land across the species’ range, small total range size, exposure to specific types of threats, and species’ range extending over several states. These results highlight strategies that can help improve conservation outcomes, such as allocating resources for imperiled species earlier in the listing process, addressing specific threats, and expanding incentives and coordination mechanisms for conservation on private lands.  相似文献   

10.
The Endangered Species Act (ESA) of the United States was enacted in 1973 to prevent the extinction of species. Recovery plans, required by 1988 amendments to the ESA, play an important role in organizing these efforts to protect and recover species. To improve the use of science in the recovery planning process, the Society for Conservation Biology (SCB) commissioned an independent review of endangered species recovery planning in 1999. From these findings, the SCB made key recommendations for how management agencies could improve the recovery planning process, after which the U.S. Fish and Wildlife Service and the National Marine Fisheries Service redrafted their recovery planning guidelines. One important recommendation called for recovery plans to make threats a primary focus, including organizing and prioritizing recovery tasks for threat abatement. We sought to determine the extent to which results from the SCB study were incorporated into these new guidelines and whether the SCB recommendations regarding threats manifested in recovery plans written under the new guidelines. Recovery planning guidelines generally incorporated the SCB recommendations, including those for managing threats. However, although recent recovery plans have improved in their treatment of threats, many fail to adequately incorporate threat monitoring. This failure suggests that developing clear guidelines for monitoring should be an important priority in improving ESA recovery planning.  相似文献   

11.
Abstract: Successful protection of biodiversity requires increased understanding of the ecological characteristics that predispose some species to endangerment. Theory posits that species with polymorphic or variable coloration should have larger distributions, use more diverse resources, and be less vulnerable to population declines and extinctions, compared with taxa that do not vary in color. We used information from literature on 194 species of Australian frogs to search for associations of coloration mode with ecological variables. In general, species with variable or polymorphic color patterns had larger ranges, used more habitats, were less prone to have a negative population trend, and were estimated as less vulnerable to extinction compared with nonvariable species. An association of variable coloration with lower endangerment was also evident when we controlled statistically for the effects of range size. Nonvariable coloration was not a strong predictor of endangerment, and information on several characteristics is needed to reliably identify and protect species that are prone to decline and may become threatened by extinction in the near future. Analyses based on phylogenetic‐independent contrasts did not support the hypothesis that evolutionary transitions between nonvariable and variable or polymorphic coloration have been accompanied by changes in the ecological variables we examined. Irrefutable demonstration of a role of color pattern variation in amphibian decline and in the dynamics and persistence of populations in general will require a manipulative experimental approach.  相似文献   

12.
Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the framework's utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade‐offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty‐four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ≤5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species’ entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive‐management program, can help to determine quantitative recovery criteria only if more long‐term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science‐based recovery criteria for endangered species with minimal data availability. Uso Actual y Potencial del Análisis de Viabilidad Poblacional para la Recuperación de Especies de Plantas Enlistadas en el Acta de Especies En Peligro de E.U.A  相似文献   

13.
Abstract: Thorough evaluation has made the International Union for Conservation of Nature (IUCN) Red List the most widely used and accepted authority on the conservation status of biodiversity. Although the system used to determine risk of extinction is rigorously and objectively applied, the list of threatening processes affecting a species is far more subjectively determined and has not had adequate review. I reviewed the threats listed in the IUCN Red List for randomly selected groups within the three most threatened orders of mammals: Artiodactyla, Carnivora, and Primates. These groups are taxonomically related and often ecologically similar, so I expected they would suffer relatively similar threats. Hominoid primates and all other terrestrial fauna faced similar threats, except for bovine artiodactyls and large, predatory carnivores, which faced significantly different threats. Although the status of bovines and hominoids and the number of threats affecting them were correlated, this was not the case for large carnivores. Most notable, however, was the great variation in the threats affecting individual members of each group. For example, the endangered European bison (Bison bonasus) has no threatening processes listed for it, and the lion (Panthera leo) is the only large predator listed as threatened with extinction by civil war. Some threatening processes appear spurious for the conservation of the species, whereas other seemingly important factors are not recorded as threats. The subjective nature of listing threatening processes, via expert opinion, results in substantial biases that may be allayed by independent peer review, use of technical manuals, consensus among multiple assessors, incorporation of probability modeling via decision‐tree analysis, and adequate coordination among evaluators. The primary focus should be on species‐level threats rather than population‐level threats because the IUCN Red List is a global assessment and smaller‐scale threats are more appropriate for national status assessments. Until conservationists agree on the threats affecting species and their relative importance, conservation action and success will be hampered by scattering scarce resources too widely and often by implementing conflicting strategies.  相似文献   

14.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

15.
Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to‐and‐fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid‐zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning.  相似文献   

16.
The U.S. Endangered Species Act grants protection to species, subspecies, and "distinct population segments" of vertebrate species. Historically, Congress included distinct population segments into endangered species legislation to enable the U.S. Fish and Wildlife Service to implement a flexible and pragmatic approach in listing populations of vertebrate species. Recently, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service have proposed a policy that would narrowly define distinct population segments as evolutionarily significant units based on morphological and genetic distinctiveness between populations. Historically, the power to list species or populations as distinct population segments has been used to tailor management practices to unique circumstances; grant varied levels of protection in different parts of a species' range; protect species from extinction in significant portions of their ranges as well as to protect populations that are unique evolutionary entities. A strict redefinition of distinct population segments as evolutionarily significant units will compromise management efforts because the role of demographic and behavioral data will be reduced. Furthermore, strictly cultural, economic, or geographic justifications for listing populations as threatened or endangered will be greatly curtailed.  相似文献   

17.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

18.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

19.
The U.S. Endangered Species Act (ESA) requires that the “best available scientific and commercial data” be used to protect imperiled species from extinction and preserve biodiversity. However, it does not provide specific guidance on how to apply this mandate. Scientific data can be uncertain and controversial, particularly regarding species delineation and hybridization issues. The U.S. Fish and Wildlife Service (FWS) had an evolving hybrid policy to guide protection decisions for individuals of hybrid origin. Currently, this policy is in limbo because it resulted in several controversial conservation decisions in the past. Biologists from FWS must interpret and apply the best available science to their recommendations and likely use considerable discretion in making recommendations for what species to list, how to define those species, and how to recover them. We used semistructured interviews to collect data on FWS biologists’ use of discretion to make recommendations for listed species with hybridization issues. These biologists had a large amount of discretion to determine the best available science and how to interpret it but generally deferred to the scientific consensus on the taxonomic status of an organism. Respondents viewed hybridization primarily as a problem in the context of the ESA, although biologists who had experience with hybridization issues were more likely to describe it in more nuanced terms. Many interviewees expressed a desire to continue the current case‐by‐case approach for handling hybridization issues, but some wanted more guidance on procedures (i.e., a “flexible” hybrid policy). Field‐level information can provide critical insight into which policies are working (or not working) and why. The FWS biologists’ we interviewed had a high level of discretion, which greatly influenced ESA implementation, particularly in the context of hybridization.  相似文献   

20.
The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species’ occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号