首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
部分除草剂与重金属混合物对发光菌的毒性   总被引:4,自引:0,他引:4  
以5种不同类型除草剂和4种重金属为混合物组分,探索混合物毒性变化规律.应用微板毒性分析方法,测定了百草敌、磺草灵、西草净、除草定、环嗪酮、CdCl2·2.5H2O、Ni(NO3)2·6H2O、CoSO4·7H2O和ZnSO4·7H2O对淡水发光菌—青海弧菌Q67(Vibrio qinghaiensis sp.—Q67)的发光抑制毒性.应用非线性最小二乘拟合技术模拟实验剂量-效应数据.结果表明,5种除草剂与4种重金属化合物的剂量-效应曲线(DRC)均可用Weibull函数有效表征.为了全面考察各种不同浓度组成的混合物对Q67的毒性,设计了9个组分同时存在的3个等效应浓度比(EECR)混合物和10个均匀设计浓度比(UDCR)混合物.同样应用微板毒性分析方法测定了各个混合物对Q67的抑制毒性,并应用非线性最小二乘拟合技术模拟了其剂量-效应曲线.通过剂量加和(DA)与独立作用(IA)模型综合分析了各个混合物对发光菌的毒性变化规律.结果表明,不同类型除草剂与多种重金属的各种浓度组合的混合物毒性均可用DA模型进行预测和评估.  相似文献   

2.
五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点   总被引:2,自引:0,他引:2  
以5种氨基甲酸酯类农药涕灭威(ALD)、残杀威(BAY)、呋喃丹(CAR)、灭多威(MET)和抗蚜威(PIR)为研究对象,应用均匀设计射线法设计五元混合物体系共6条射线(U1,U2,…,U6),应用基于发光菌青海弧菌Q67的微板毒性分析法(MTA)系统地考察了5种农药及其混合物的毒性,以浓度加和(CA)为参考模型分析混合物毒性相互作用(协同或拮抗作用)。结果表明,Logti和Weibull函数能较好地拟合5种氨基甲酸酯农药及其混合物对发光菌Q67的浓度-效应数据(R20.99,RMSE0.032);以EC50的负对数值pEC50为毒性指标,5种农药的毒性顺序为BAY(pEC50=2.87)CAR(pEC50=2.67)ALD(pEC50=2.00)MET(pEC50=1.99)PIR(pEC50=1.79);依据CA,五元氨基甲酸酯类农药的6条混合物射线中,有2条呈加和作用,4条呈拮抗作用,其中U2和U4在整条浓度-效应曲线上呈现了明显的拮抗作用,而U3和U6的弱拮抗作用分别发生在混合物浓度的中高浓度区和中低浓度区;五元氨基甲酸酯类农药混合物的毒性与组分灭多威(MET)的浓度比呈良好的负相关关系(r=-0.9238),且线性模型对混合物毒性具有良好的预测能力。  相似文献   

3.
离子液体(ILs)是一种用于替代传统易挥发有机溶剂的新型"绿色"溶剂.由于不挥发、不会对大气产生污染而得到广泛应用.但是某些ILs易溶于水,其自身毒性能够对生态环境造成潜在影响,这已引起诸多学者对ILs毒性的研究兴趣.然而ILs与其它污染物的毒性相互作用目前研究很少.论文选取咪唑类离子液体C16H31ClN(2DMI)与有机磷杀虫剂乐果(DIM)作为目标化合物,以青海弧菌Q67为检测生物,采用微板毒性分析法测定了目标化合物及其混合物的毒性.为全面考察不同浓度范围DMI与DIM的毒性相互作用,将中心复合设计与固定浓度比射线法有机结合起来构建5个不同浓度比的混合物射线,通过浓度加和与独立作用模型对混合物射线进行比较评估.结果表明在DMI浓度较大且DIM浓度较低时,DMI与DIM之间存在明显拮抗作用,而在其它浓度范围内两者之间为加和作用.  相似文献   

4.
部分重金属化合物对淡水发光菌的毒性研究   总被引:9,自引:1,他引:9  
应用微板毒性分析方法,分别测定了CdCl2·2.5H2O、CoSO4·5H2O、Cr(NO3)3·3H2O、Cu(NO3)2·3H2O、Fe(NO3)3·3H2O、MnCl2·9H2O、Na2SeO3、ZnSO4·7H2O、Ni(NO3)2·6H2O9种重金属离子化合物及其混合物对淡水发光菌—青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)的发光抑制毒性.结果表明,9种重金属离子化合物对Q67的剂量-效应关系均可用Weibull或Logit模型有效描述.由拟合剂量-效应曲线得到这9种重金属离子化合物的半数效应浓度EC50的负对数值(-logEC50)分别为4.35、3.08、2.39、3.83、3.34、2.39、3.32、3.93和2.76,说明其毒性顺序为:CdCl2·2.5H2O>ZnSO4·7H2O>Cu(NO3)2·3H2O>Fe(NO3)3·3H2O>Na2SeO3>CoSO4·5H2O>Ni(NO3)2·6H2O>Cr(NO3)3·3H2O≈MnCl2·9H2O.为了研究重金属混合物的毒性规律,设计了4组等效应浓度(EC50、EC15、EC10和EC5)比混合物,测试了其混合物毒性,并应用剂量加和(DA)、独立作用(IA)原理及经典联合毒性评价方法进行了分析.DA与IA分析表明,所研究的4种混合物的毒性具有拮抗特征,而毒性单位法(TU)和混合指数法(MTI)的评价结果均为部分相加作用,相加指数法(AI)的评价结果则为拮抗作用.所选评价方法不同,混合物毒性评价结果可能也不同.  相似文献   

5.
5种取代酚化合物对淡水发光菌的联合毒性   总被引:22,自引:7,他引:22  
以新型淡水发光菌——青海弧菌Q67(Vibrio-qinghaiensissp.—Q67)为检验生物,以VeritasTM微孔板光度计为发光强度测试设备,分别测定了3,5-二羟基甲苯、2,3-二甲基苯酚、对氯苯酚、邻氯苯酚、2,4-二氯苯酚对淡水发光菌的发光抑制毒性及其混合物的联合毒性.结果表明,5种取代酚的剂量-效应关系都可用Weibull模型有效描述,从这些模型估算的半数效应浓度负对数值(-logEC50)分别为2.69、3.08、3.43、2.81和3.66,可知其对发光菌的毒性大小顺序为:2,4-二氯苯酚>对氯苯酚>2,3-二甲基苯酚>邻氯苯酚>3,5-二羟基甲苯.分别设计浓度等于各自之EC50和EC10的2个等效应浓度比混合物以及3个不同效应浓度比混合物进行联合毒性实验,结果发现,在所实验的浓度范围内各个混合物的剂量加和(DA)模型与独立作用(IA)模型具有相似的作用规律,其联合毒性既可用DA模型也可用IA模型进行预测.  相似文献   

6.
多组分苯胺类混合物对发光菌的抑制毒性   总被引:12,自引:7,他引:12  
以淡水发光菌——青海弧菌(Q67)为指示生物,96微孔板为实验反应载体,微板光度计为发光强度测试设备,测定了苯胺、邻甲基苯胺、对甲基苯胺、邻硝基苯胺、对硝基苯胺及其混合物对发光菌的发光抑制毒性,应用非线性最小二乘拟合技术与剂量加和(DA)及独立作用(IA)原理研究了混合物的毒性规律.1)分别测定每种化合物的剂量-效应数据并进行非线性拟合.结果表明,5种苯胺类化合物的剂量-效应曲线(DRC)均可用Logit与Weibull函数有效表征,从这些模型估算的半数效应浓度负对数值(-logEC50)分别为2.11、2.35、2.49、3.60和3.88(EC50单位:mol·L-1),可知其对发光菌的毒性大小顺序为:苯胺<邻甲基苯胺<对甲基苯胺<邻硝基苯胺<对硝基苯胺.2)根据组分EC50、EC10和EC1设计3个等效应浓度比混合物进行混合物毒性实验,并对混合物剂量-效应数据进行非线性拟合得到混合物DRC.结果表明,混合物DRC可用Box-Cox-Logit与Box-Cox-Weibull函数有效表征.3)根据单一化合物DRC模型,分别应用剂量加和(DA)与独立作用(IA)模型对混合物DRC进行预测.结果表明,无论考察混合浓度比例还是效应水平,剂量加和模型都能准确预测苯胺类混合物的毒性,而独立作用模型倾向于高估混合物毒性.  相似文献   

7.
离子液体与有机磷农药间的毒性相互作用   总被引:3,自引:0,他引:3  
"绿色"溶剂离子液体(ILs)与其他污染物之间的毒性相互作用已有报道,但相关数据仍较为缺乏。以7种具有不同阴阳离子组成的ILs:溴化丁基吡啶(IL1)、氯化丁基-2,3-二甲基咪唑(IL2)、丁基-3-甲基咪唑翁磷酸盐(IL3)、丁基-3-甲基咪唑正辛基硫酸(IL4)、丁基-2,3-二甲基咪唑二乙二醇单甲醚硫酸盐(IL5)、辛基-3-甲基咪唑二乙基醚单甲磺硫酸(IL6)和氯化己基-3-甲基咪唑(IL7),与5种有机磷农药(OPs):敌敌畏(DIC)、乐果(DIM)、草甘膦(GLY)、久效磷(MON)和磷胺(PHO),作为混合物组分,以等效应浓度比射线法设计7种ILs分别与5种OPs等EC_(50)配比的35组二元混合物,应用微板毒性分析法(MTA)测定这些混合物对青海弧菌Q67的毒性,以浓度加和(CA)和独立作用(IA)为参考模型分析毒性相互作用。结果表明,不同的IL-OP混合物呈现的作用类型不同:如IL1-DIM、IL2-DIM、IL3-DIM、IL6-DIM、IL2-MON和IL7-DIM的混合物呈明显的拮抗作用;IL3-DIC和IL2-GLY的混合物呈明显的协同作用;IL5-DIM和IL4-MON的混合物在较高浓度区呈拮抗作用;而IL3-GLY和IL6-DIC的混合物在较高浓度区呈协同作用;其余的混合物则为加和作用。  相似文献   

8.
多种污染物混合特别是低浓度下的混合对生物的联合毒性是生态毒理学研究的热点之一。选择了3类污染物苯酚、间甲基苯酚、苯胺、对硝基苯胺、硝酸铅,采用美国微板光度计测定了它们对发光菌青海弧菌-Q67(Vibrio-qinghaiensis sp.-Q67)的单一及联合毒性。应用非线性拟合技术模拟了这5种物质及其混合物的剂量-效应曲线,硝酸铅可用Logit模型模拟,其它4个物质能用Weibull模型准确描述,所有拟合相关系数在0.98以上,均方根误差在0.02以下。根据纯物质的EC50值,获得这5个物质的毒性强弱顺序:硝酸铅〉对硝基苯胺间甲基苯酚苯酚苯胺。混合实验设计了各物质在EC50、EC1、无观察效应浓度(no observed effect concentration,NOEC)比例的混合。用浓度加和(dose addition,DA)和独立作用模型(independent action,IA)对混合物毒性进行预测。IA基本准确预测了这5个物质在各自EC50混合的毒性。DA与IA模型都稍微过高地预测了以EC1及NOEC浓度比例混合的联合毒性,但都在毒理学实验容许的范围之内。这5个物质以NOEC混合时对测试生物Q67没有产生明显毒性,但是还不能判定这些物质在此浓度下混合是安全的。污染物在各自的NOEC浓度下混合是否对其它生物有潜在的威胁还需更多毒理学实验支持。  相似文献   

9.
等效线图法(isobologram)是评估化学混合物毒性相互作用的经典方法之一,然而该方法仅能评估混合物在某一特殊浓度效应水平(通常为50%的浓度效应水平,即EC50)的联合毒性作用情况。因此,拓展等效线图法并用于不同效应水平下混合物毒性的评估显得尤为必要。以杀菌剂多果定(Dod)和3种离子液体(ILs)包括溴化丁基吡啶([bpy]Br)、溴化己基吡啶([hpy]Br)和溴化辛基吡啶([opy]Br)为混合物组分,采用直线均分射线法设计3组二元混合物体系(Dod-[bpy]Br、Dod-[hpy]Br和Dod-[opy]Br)共15条射线,应用微板毒性分析法系统测定各污染物及其混合物射线对青海弧菌Q67(Vibro qinghaisiense sp. Q67,Q67)的毒性,应用拓展等效线图法分析15条混合物射线在5个不同效应水平(EC20、EC30、EC40、EC50和EC60)的毒性相互作用,并与经典等效线图法和浓度加和模型(CA)评估的结果进行比较。结果表明:以p EC50为毒性指标,3种吡啶ILs对Q67的毒性具有烷基链效应,即毒性大小顺序为Dod-[opy]BrDod-[hpy]BrDod-[bpy]Br; 3组二元混合物体系的15条射线的毒性,随农药Dod浓度比的减少而减弱;拓展等效线图法可以比较直观地表征3组Dod-ILs混合物体系在5个不同效应水平的拮抗作用,且拮抗作用强度随Dod浓度比的增加而变化,即先增强后减弱;拓展等效线图法可以有效地评估二元混合物在多个效应水平的联合毒性相互作用。  相似文献   

10.
重金属和有机磷农药污染物在水域环境中普遍存在。以卤虫(Artemiasalina)为受试生物,采用固定浓度比法,研究了重金属Zn、Cd与辛硫磷和敌百虫2种农药以毒性单位比为4∶1、3∶2、1∶1、2∶3和1∶4构成的二元混合体系对卤虫的联合毒性,采用等效线图解法判定毒物间的相互作用类型。同时,基于单一化合物的浓度-效应曲线,运用浓度加和(CA)和独立作用(IA)2种模型对不同配比二元混合物的联合毒性进行预测。结果表明,Zn-Cd混合物联合毒性随Zn比例的增加而增强。低Zn比例的混合物(1∶4、2∶3)表现为拮抗效应,中、高Zn比例的混合物(1∶1、3∶2和4∶1)为加和效应。5种不同配比的有机磷农药混合物均表现为加和效应。金属-农药混合物则均为拮抗作用。模型预测结果表明,CA能够较好地预测辛硫磷与敌百虫二元混合物的联合毒性,而IA则更适用于对金属-农药混合物联合毒性的预测。以上结果表明,混合体系中各组分的比例是影响联合毒性的因素之一,毒性评估时应该充分考虑其影响。CA及IA模型同样适用于评估和预测包含相同或完全独立作用机制组分的混合物对非单细胞生物体(如卤虫)的联合毒性。  相似文献   

11.
杠板归的化学成分   总被引:1,自引:0,他引:1  
采用柱层析方法从蓼科药用植物杠板归(Polygonum Perfoliatum)分离了21个化合物(1~21),通过MS与NMR数据鉴定这些化合物为α-tocopherolquinone (1), 7'-dihydroxymatairesinol (2), (24S)-24-ethylcholesta-3β,5α,6α-triol (3), 4-dihydroxy-5,7-dihydroxy-4-(4-hydroxyphenyl) coumarin (4), quercetin (5), cucurbitacin Ⅱa (6), cucurbitacin U (7), iotroridoside A (8), pokeweedcerebroside 5 (9), bonaroside (10), helonioside A (11), helonioside B (12), lapathoside D (13), vanicoside B (14), vanicoside C (15), vanicoside F (16), asteryunnanoside F (17), saikosaponin M (18), hydropiperoside (19), quercetin-3-O-β-D-glucuronide-6"-butyl ester (20), quercetin-3-O-β-D-glucuronide-6"-methyl ester (21). 化合物1~19(除4,5,12)为首次从该植物中分离得到,化合物1~11(除4,5)和17~19为首次从该属植物中分离得到.图1参22  相似文献   

12.
锥头麻的化学成分研究   总被引:3,自引:0,他引:3  
从锥头麻枝叶中分离到10个化合物:熊果酸(1)、2α,3β,19α三羟基12烯28乌苏酸(2)、羽扇豆醇(3)、β谷甾醇(4)、β胡萝卜苷(5)、大黄素8OβD吡喃葡萄糖苷(6)、5α,8α表二氧(22E,24R)麦角甾6,22二烯3β醇(7)、(2S,3S,4R,8E)2[(2′R)2′羟基二十四烷酰氨基]1,3,4三羟基8十八烷烯(8)、1OβD吡喃葡萄糖(2S,3S,4R,8Z)2[(2′R)2′羟基二十四烷酰氨基]3,4二羟基8十八烷烯(9)、1OβD吡喃葡萄糖(2S,3S,4R,8E)2[(2′R)2′羟基二十四烷酰氨基]3,4二羟基8十八烷烯(10),其中化合物9、10以混合物形式分离得到.应用波谱方法及与已知品对照的手段鉴定了它们的结构.图1表1参9  相似文献   

13.
Analyses of individual content of carbon (C), nitrogen (N), and hydrogen (H) were carried out for all larval stages of Pagurus bernhardus and Carcinus maenas, and for newly metamorphosed crabs. Maximum range in total larval development is 12.8 to 165.8 g C, 3.2 to 35.1 g N, and 1.9 to 24.9 g H in P. bernhardus and 3.1 to 43.2 g C, 0.7 to 10.1 g N, and 0.4 to 6.3 g H in C. maenas. From these data energy equivalents were calculated. Maximum range in total larval life is 0.43 to 6.38 J ind. -1 in P. bernhardus and 0.1 to 1.49 J ind. -1 in C. maenas. There is a 32.4% mean loss of energy in P. bernhardus megalopa development; this seems to describe the normal developmental pattern in this stage. Biomass was determined as fresh and dry weight respectively. Individual dry weight is about 3.6 to 5.6 times higher in P. bernhardus (44 to 340 g) than in C. maenas (12 to 93 g) larvae.Contribution to research project Experimentelle marine Ökosystemanalyse sponsored by Bundesministerium für Forschung und Technologie, Bonn (Grant No. MFU-0328/1)  相似文献   

14.
袋花忍冬的化学成分研究   总被引:8,自引:0,他引:8  
从袋花忍冬全草95%乙醇提取物中首次分离得到16个化合物.应用波谱方法及与已知品对照,将其鉴定为E-p-coumaryl hexacosanate(1)、β-谷甾醇(2)、2,6-dihydroxyhumula-3(12),7(13),9(E)-triene(3)、十六烷酸1-甘油酯(4)、(20S,22E,24R)-5α,8α-表二氧-麦角甾-6,22-二烯-3β-醇(5)、环阿尔廷-25-烯-3β,24ξ-二醇(6)、二十四烷酸(7)、2,4-二羟基-3,6-二甲基苯甲酸甲酯(8)、乌苏酸(9)、柚皮素(10)、胡萝卜苷(11)、木犀草素(12)、柏双黄酮(13)、咖啡酸(14)、洋芹素(15)和木犀草素-7-O-β-D-葡萄糖苷(16).其中木犀草素(12)和咖啡酸(14)为袋花忍冬中具有ACE抑制活性的化合物.图1参13  相似文献   

15.
Intracellular and extracellular granules are found in most bivalve kidneys. We examined the composition of kidney granules from the infaunal bivalveMercenaria mercenaria (L.) collected in 1985 from Cataumet Bay, Bourne, and Waquoit Bay, Falmouth, Massachusetts, USA. Small granules are numerically dominant, but large granules dominate the samples on the basis of weight. Large granules (estimated diam. >15 m) are composed primarily of metals (28% by weight) with Mn (8%), Ca (8%), Zn (4%) and Fe (4%) as the major contributors. Non-metal elements (P, C, H, N, S) together constituted 21% of the granule dry weight, though organic content (0.02% protein, 0.3% carbohydrate and 0.5% lipid) was low. Small kidney granules (10 m diam.) and digestive gland granules fromM. mercenaria had significantly higher C, H, and N contents than larger kidney granules. Our results, taken together with those from other bivalve species, suggest that kidney granule formation and subsequent increase in size is a continuous process of lysosomal maturation, residual body release and extracellular accumulation of predominately inorganic elements.  相似文献   

16.
K. Anger 《Marine Biology》1988,99(2):255-260
Larvae of the spider crab Inachus dorsettensis were reared in the laboratory at constant 12 °C. Development lasted 8 to 10 d in the Zoea I, 10 to 12 d in the Zoea II and 14 to 20 d in the megalopa stage. During this time, larval growth was measured in samples taken every 2 to 4 d as dry wt (W), carbon (C), nitrogen (N), and hydrogen (H); energy content (E) was calculated from C. Biomass and energy (per individual) increased in each larval stage as a parabola-shaped function of age, which could be fitted by a power equation. C, H, and E show a higher percentage gain (relative to the initial values at hatching) than W or N, suggesting that proportionally more lipid than protein is accumulated during larval development. There are cyclical changes in the relative (per unit of W) biomass and energy figures, corresponding to the larval moult cycles: immediately after each ecdysis all these values decrease, presumably due to rapid uptake of water and minerals, then they increase again due to tissue growth and remain high until the next moulting occurs. Cyclical changes in the C/N ratio suggest that proportionally more lipid than protein is accumulated during the initial (postmoult) phase of the moult cycle, followed by a period of balanced or protein-dominated gain during the intermoult and premoult phases. These patterns of growth and elemental composition observed during the complete larval development and in single moult cycles of I. dorsettensis are compared with those described in the literature for other decapod species. This comparison suggests a high degree of similarity in biochemical composition and growth characteristics of larval decapod crustaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号