首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
产甲烷生化代谢途径研究进展   总被引:4,自引:0,他引:4  
微生物产甲烷过程产生的甲烷约占全球甲烷产量的74%.产甲烷过程对生物燃气生产和全球气候变暖等都有着重要的意义.本文综述了产甲烷菌的具体生化代谢途径,其本质是产甲烷菌利用细胞内一系列特殊的酶和辅酶将CO2或甲基化合物中的甲基通过一系列的生物化学反应还原成甲烷.在这一过程中,产甲烷菌细胞能够形成钠离子或质子跨膜梯度,驱动细胞膜上的ATP合成酶将ADP转化成ATP以获得能量.根据底物类型的不同,可以将该过程分为3类:还原CO2途径、乙酸途径和甲基营养途径.还原CO2途径是以H2或甲酸作为主要的电子供体还原CO2产生甲烷,其中涉及到一个最新的发现——电子歧化途径;乙酸途径是乙酸被裂解产生甲基基团和羧基基团,随后,羧基基团被氧化产生电子供体H2用于还原甲基基团;甲基营养途径是以简单甲基化合物作为底物,以外界提供的H2或氧化甲基化合物自身产生的还原当量作为电子供体还原甲基化合物中的甲基基团.通过这3种途径产甲烷的过程中,每消耗1mol底物所产生AT P的顺序为还原CO2途径>甲基营养途径>乙酸途径.由于产甲烷菌自身难以分离培养,未来将主要通过现代的生物技术和计算机技术,包括基因工程和代谢模型构建等最新技术来研究产甲烷菌的生化代谢过程以及其与其它菌群之间的相互作用机制,以便将其应用于生产实践.  相似文献   

2.
烟碱类杀虫剂吡虫啉(imidacloprid,IMI)在环境中可代谢为生物活性提高10倍的烯式吡虫啉(olefin IMI).研究了olefin IMI的光稳定性、光解动力学和光解代谢途径.结果表明:olefin IMI在避光条件下较为稳定,室温下放置400 d后,olefin IMI含量仅减少3%;而在室内模拟日光条件下,olefin IMI易于分解,光解反应符合一级动力学方程(r>0.99),半衰期为4 d.olefin IMI的光解反应存在2条主要途径:一是羟基化生成4,5-二羟基化吡虫啉,该产物进一步氧化断裂药效基团硝基亚胺基生成羰基化产物;二是直接脱去硝基基团生成胍基产物.  相似文献   

3.
甲基一六○五降解菌J5的分离及其降解性状研究   总被引:13,自引:0,他引:13  
从农药厂污水处理系统中分离到1株降解甲基一六○五(0,0-二甲基-0-对硝基苯基-硫代磷酸酯,简称MP)的芽胞杆菌,初步鉴定为蜡状芽胞杆菌(Bacillus cereus)J5。J5能够高效降解MP,但它不能利用MP作为唯一碳源生长,其代谢方式可能共代谢。在有葡萄糖作为碳源的条件下,J5可以高效转化MP,其转化效率可达95%以上。用薄层层析、紫外扫描和液相色谱法初步研究了J5对MP的降解性能及相关解产物。  相似文献   

4.
水溶液中硝基苯的超声微电场降解   总被引:13,自引:0,他引:13  
研究了超声微电场中硝基苯的降解过程,并探讨了降解机理及反应历程。结果表明,硝基苯的降解符合拟一级反应,超声与微电场的耦合协同作用大大提高了硝基苯的降解效率,在槽电压10V条件下,协同作用的降解速率比简单加和作用的速率高一倍以上,经过30min协同处理后可以获得93.8%的去除率,而溶液中饱和气体种类等对降民产生一定的影响,经紫外和SMPE-GC-MS分析,推断硝基苯在电超声场作用下存在氧化还原反应与热解、自由基作用等协同作用。主要中间降解产物为苯胺、偶氮苯、1-氧,2-苯基-二氮烯、1,2-苯二甲酸二丁酯、1,2-苯二甲酸丁酯异丁酯等,最终产物为CO2、水及无机盐类。  相似文献   

5.
戴竹青  戴巍  王明新  张文艺 《环境化学》2019,38(9):2108-2117
采用高铁酸钾降解水中典型嗅味物质异佛尔酮(IPO),考察了高铁酸钾投加量、溶液初始pH、IPO浓度、温度和反应时间等因素对IPO降解率的影响.采用响应面法进行多因素实验设计,利用二次多项式和逐步回归法拟合了IPO降解率、Fe~(2+)、Fe~(3+)与降解条件之间的关系,对降解条件进行了优化.采用GC-MS分析IPO的降解产物,探讨了IPO的降解机理.结果表明,高铁酸钾可以在1 min内迅速降解IPO. IPO降解率与高铁酸钾投加量正相关,与溶液初始pH负相关.在IPO初始浓度为6.0 mg·L~(-1)、溶液初始pH值为4.0、高铁酸钾投加量为0.9 g·L~(-1)、反应时间为5 min时,IPO降解率可达100%. Mn~(2+)、Mg~(2+)、NH~+_4和HCO~-_3等共存离子会抑制高铁酸钾对IPO的降解.高铁酸钾对IPO的氧化降解作用大于吸附、混凝的去除作用. GC-MS检测到的降解产物有4-羟基-4-甲基-2-戊酮、5-异丙基-5-甲基二氢-2(3H)-呋喃酮和4-甲基-4-戊烯-2-酮等物质,推测高铁酸钾对IPO的降解途径主要是氧化、加氢和脱碳等.  相似文献   

6.
硫氧化细菌的分离鉴定及降解特性   总被引:1,自引:0,他引:1  
从浙江华海药业污水处理系统中分离得到一株硫氧化细菌T3,基于形态特征、生理生化、16S rRNA基因序列系统学分析和Biolog鉴定系统分析,鉴定该菌株为根瘤菌属.摇瓶实验结果表明,T3生物降解最适生长温度为30℃,最适pH值为8.0,外加氯化铵、碳源对菌株生长及硫化钠降解有促进作用,驯化后的硫氧化细菌对硫化钠有很强的耐受能力,最优生长条件下,2 d内菌株T3能将400 mg/L以下浓度的硫化钠降解彻底,是一株有应用前景的硫氧化细菌.通过测定代谢过程中各种物质的含量,确定该菌株对硫化钠的去除机理为S2-→S2O32-/S0→SO32-→SO42-.图8表1参18  相似文献   

7.
臭氧过量条件下异戊二烯氧化生成羰基化合物的产率   总被引:3,自引:0,他引:3  
陈忠明  史飞  朱李华 《环境化学》2005,24(5):516-519
利用长光路傅立叶变换红外光谱(LP-FTIR)原位跟踪的方法,模拟研究了异戊二烯与过量臭氧氧化反应产生羰基化合物的过程.在反应温度(294±2)K,压力为1·01×105Pa空气,O3过量的条件下,异戊二烯很快反应完全,反应中生成的羰基产物主要包括甲基丙烯醛(MACR)、甲基乙烯基酮(MVK)、丙酮醛(MG)和甲醛(HCHO);产物中还包括甲酸(HCOOH)、一氧化碳和二氧化碳.由于MACR和MVK继续与O3反应直至完全,它们的产率随时间而变化,反应过程中观测到的最大产率分别为0·33±0·02和0·21±0·02;而MG,HCHO,HCOOH,CO和CO2不与O3发生反应,最终产率分别为0·48±0·03,0·87±0·03,0·49±0·03,0·60±0·03和0·65±0·10.异戊二烯臭氧氧化反应对大气羰基化合物特别是甲醛和丙酮醛具有重要贡献.  相似文献   

8.
本论文以施氏假单胞菌N2为受试菌株,研究了N2菌对邻/间/对甲酚及其混合物的生物降解特性.结果表明,N2菌能以邻/间/对甲酚为唯一碳源和能源生长,但对3种异构体的降解速率各异.完全降解600 mg·L~(-1)的对甲酚仅需6 h,间甲酚则需24 h,但对邻甲酚的降解明显减缓;200 mg·L~(-1)邻甲酚48 h的降解率仅为11.38%.GC-MS结果分析发现,N2菌代谢甲酚途径主要为甲基氧化、芳环羟化,随后脱羧、开环裂解、降解转化至矿化,但3种甲酚的降解途径及酸性代谢产物的形成次序不一致.3种甲酚混合存在时可促进N2菌对其降解,这主要是因为混合碳源的协同作用减少了体系中因产酸过多引起的毒性,从而促进了N2菌对甲酚的降解矿化.  相似文献   

9.
为明晰抗盐木麻黄内生真菌次生代谢物与盐分胁迫之间的关系,选用高效液相色谱仪(HPLC)和气相色谱-质谱联用仪(GC-MS)对不同NaCl浓度培养的两株木麻黄内生真菌(Y6、Z1)及其混菌发酵液进行检测并分析比较.结果显示:(1)Y6菌发酵液在5%NaCl浓度下赤霉素含量最大,与其他处理有显著差异(P 0.05),Z1菌发酵液中玉米素含量显著高于Y6菌和混菌发酵液中玉米素含量,0%浓度下,混菌发酵液吲哚-3-乙酸含量最大,与其他处理有显著差异(P 0.05),Y6菌和Z1菌发酵液中吲哚-3-乙酸含量最大值分别在1%和3%浓度.(2)两菌株发酵液成分相对含量高于30%的物质主要有环(L-脯氨酰-L-亮氨酰)、喇叭茶醇、5-亚硝基-2,4,6-三氨基嘧啶、2-丁基-1-辛醇、邻苯二甲酸二正辛酯、5-羟甲基糠醛,高浓度(5%)环境下产出的物质种类显著不同于低浓度(0%)环境下的物质.上述研究表明,两株内生真菌及其混菌均能产生吲哚-3-乙酸、赤霉素和玉米素3种植物激素,不同内生真菌、不同NaCl浓度菌株发酵液成分存在差异,高浓度(5%)环境下能够诱导两株内生真菌产生丰富的代谢产物,但上述物质是否都对木麻黄幼苗生长具有抗盐、促生和抑菌效果以及其作用机理还有待进一步研究.(图1表3参42)  相似文献   

10.
孔雀石绿降解菌M3的分离鉴定及降解特性研究   总被引:8,自引:0,他引:8  
从鱼塘底泥中筛选分离出1株能高效降解低含量孔雀石绿(MG)的细菌M3.经16S rDNA同源性序列分析,鉴定为泛菌属(Pantoea sp.).30 ℃静止培养条件下,该菌株对0.5、1.0、2.0和5.0 mg·L-1孔雀石绿5 d的降解率分别为97.54%、97.1%、100%和77.8%.菌株M3不能以MG为唯一碳源进行生长和代谢.葡萄糖、NH4NO3、KH2PO4/K2HPO4均能影响菌株M3对MG的降解.20~30 ℃温度范围内菌株M3对MG有明显降解效果,且降解速率随温度上升而提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号