首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Many organisms live in crowded groups where social density affects behavior and fitness. Social insects inhabit nests that contain many individuals where physical interactions facilitate information flow and organize collective behaviors such as foraging, colony defense, and nest emigration. Changes in nest space and intranidal crowding can alter social interactions and affect worker behavior. Here, I examined the effects of social density on foraging, scouting, and polydomy behavior in ant colonies—using the species Temnothorax rugatulus. First, I analyzed field colonies and determined that nest area scaled isometrically with colony mass—this indicates that nest area changes proportionally with colony size and suggests that ants actively control intranidal density. Second, laboratory experiments showed that colonies maintained under crowded conditions had greater foraging and scouting activities compared to the same colonies maintained at a lower density. Moreover, crowded colonies were significantly more likely to become polydomous. Polydomous colonies divided evenly based on mass between two nests but distributed fewer, heavier workers and brood to the new nests. Polydomous colonies also showed different foraging and scouting rates compared to the same colonies under monodomous conditions. Combined, the results indicate that social density is an important colony phenotype that affects individual and collective behavior in ants. I discuss the function of social density in affecting communication and the organization of labor in social insects and hypothesize that the collective management of social density is a group level adaptation in social insects.  相似文献   

2.
Summary The emigration and raiding behavior of the SE Asian ponerine ant Leptogenys sp. 1, which resembles L. mutabilis, were observed in the field (Ulu Gombak, Malaysia). The ants formed monogynous colonies that consisted of up to 52 100 workers. The bivouac sites of this species were found in leaf litter, rotten logs, ground cavities, etc., and were rarely modified by the ants. The colonies stayed in these temporary nests for several hours to 10 days; afterwards, they moved to a new nest site. The emigration distances ranged from 5–58 m. Since nest changing takes place at irregular intervals, and pupae and larvae are always present in the nest relocations of Leptogenys sp. 1, the emigration behavior is not linked to a synchronized brood development. Leptogenys sp. 1 is a nocturnal forager; in our study, up to 42 600 workers participated in each raid. The ants move forward on a broad front; behind the swarm a fan-shaped network of foraging columns converges to form a main trunk trail. A new system of foraging trails is developed in each raid. The workers search for their prey collectively; they attack and retrieve the booty together. The diet of Leptogenys sp. 1 consists mainly of arthropods. Army ant behavior is characterized by (1) formation of large monogynous colonies, (2) frequent emigrations, and (3) mass raids in which all foraging activities are carried out collectively. Since Leptogenys sp. 1 performs these typical army ant behavior patterns, this species represents the army ant ecotype. However, this species differs considerably from army ant species that have synchronized broods and huge colonies with dichthadiiform queens.Dedicated to Professor Dr. M. Lindauer on the occasion of his 70th birthday  相似文献   

3.
In several ant species, colonies are founded by small groups of queens (pleometrosis), which coexist until the first workers eclose, after which all but one queen is killed. It has been hypothesized that, by producing a larger cohort of workers, cooperating queens may increase colony success during brood raids, a form of competition in which brood and workers from losing nests are absorbed into winning colonies. To test whether this benefit is sufficient to favor pleometrosis, newly mated queens of the fire ant Solenopsis invicta were assembled in groups of one, two, three, or four, reared in the laboratory until the first workers eclosed, then planted in the field in replicated assemblages. The proportion of colonies engaging in brood raids increased with average foundress number per nest and with colony density but was unaffected by variance in foundress number among interacting colonies. Within mixed assemblages of single-queen and multiple-queen colonies, queen number had no effect on the likelihood of engaging in raids or the probability of nest survival through the brood raiding period. However, following nearly 30% of raids, queens moved to new nests and displaced the resident queens. When queen relocation and subsequent mortality were accounted for, it was found that the survival of queens from four-queen groups was substantially higher than that of solitary queens. By contrast, the survival of queens from two-queen colonies was no greater than that of solitary queens. These results show that the competitive advantages of multiple-queen colonies are sufficient to counterbalance the increased mortality of queens within groups only when the number of foundresses is greater than two and when colonies are founded at high density. When colonies lose brood raids, the workers appear to abandon their mothers to join surviving colonies. However, in laboratory experiments, queens attempting to enter foreign nests were significantly more likely to displace the resident queen if their own daughters were present within the invaded nest. Thus, workers may be able to bias the probability that their mother rejoins them and displaces competing queens.  相似文献   

4.
Summary Augochlorella striata was studied at the northern limit of its range. The study population contained a mixture of solitary and social nest foundresses. Eusocial foundresses produced 1 or 2 workers before switching to a male biased brood. Solitary foundresses produced males first. Cells vacated by eclosed offspring were reused late in summer. A female biased brood resulted from cell reuse in both solitary and eusocial nests. Workers were slightly smaller than their mothers and were sterile although most of them mated. In comparison to published data from a Kansas population of this species, the Nova Scotia population had i) a lower proportion of multiple foundress nests, ii) a smaller worker brood and iii) a briefer period of foraging activity but iv) comparable overall nest productivity.  相似文献   

5.
Summary Colony structure and reproductive investment were studied in a population of Myrmica punctiventris. This species undergoes a seasonal cycle of polydomy. A colony overwinters in entirety but fractionates into two or more nest sites during the active season and then coalesces in the fall. Colony boundaries were determined by integrating data on spatial pattern, behavioral compatability, and genetic relatedness as revealed by protein electrophoresis. Colonies contained at most one queen. Consequently, a colony consisted of one queenright nest and one or more queenless nests. Furthermore, estimates of relatedness were fully consistent, with queens being single mated. M. punctiventris therefore has a colony genetic structure that conforms to the classical explanation of the maintenance of worker sterility by kin selection. Kin selection theory predicts that workers would favor a female-biased allocation ratio while selection on queens would favor equal investment in males and females. We predicted that in polydomous populations, queenless nests would rear more female reproductives from diploid larvae than queenright nests. There was a significant difference between queenright and queenless nests in sexual allocation; queenless nests allocated energy to reproductive females whereas queenright nests did not. At neither the nest nor colony levels did worker number limit sexual production. We also found that nests tended to rear either males or females but when colony reproduction was summed over nests, the sexes were more equally represented. The difference in allocation ratios between queenless and queenright nests was attributed solely to queen presence/absence. Our work shows that polydomy provides an opportunity for workers to evade queen control and thereby to sexualize brood.Offprint requests to: L.E. Snyder at the current address  相似文献   

6.
Bumblebee colonies experience daily and seasonal fluctuations in ambient temperature, but proper brood development requires a stable nest temperature. This study examined how adaptive colony responses to changing ambient temperature are achieved through the in-nest workers’ behavioral plasticity. We studied three Bombus huntii colonies in the laboratory. In the first experiment, we manipulated ambient temperature and recorded brood cell incubation and wing fanning by individually marked, known-age bees. The colonies maintained their nests closer to appropriate brood development temperatures (28 to 32°C) when exposed to a range of ambient temperatures from 10.3 to 38.6°C. Incubation activity was greater in cooler treatment conditions, whereas in the highest temperature treatment, some bees fanned and others moved off the brood. As the ambient temperature dropped, workers increased the duration of their incubating bouts, but, except at the highest temperature, the number of workers that incubated did not differ significantly among treatments. A subset of the bees incubated significantly more than their nest mates, some of which never incubated. Worker body size, but not age, was a good predictor of incubation rates, and smaller bees incubated at higher rates. In the second experiment, we removed the most actively incubating workers. Immediately after removals, the total colony incubation effort was lower than pre-removal levels, but incubation effort rebounded toward pre-removal levels after 24 h. The increased thermoregulatory demand after removals was met primarily by bees increasing their rates of incubation rather than by bees switching from a different task to incubation. We conclude that some B. huntii workers specialize on nest thermoregulation, and that changes in work rates are more important than task switching in meeting thermal challenges.  相似文献   

7.
Efficient and robust transportation networks are key to the effectiveness of many natural systems. In polydomous ant colonies, which consist of two or more spatially separated but socially connected nests, resources must be transported between nests. In this study, we analyse the network structure of the inter-nest trails formed by natural polydomous ant colonies. In contrast to previous laboratory studies, the natural colonies in our study do not form minimum spanning tree networks. Instead the networks contain extra connections, suggesting that in natural colonies, robustness may be an important factor in network construction. Spatial analysis shows that nests are randomly distributed within the colony boundary and we find nests are most likely to connect to their nearest neighbours. However, the network structure is not entirely determined by spatial associations. By showing that the networks do not minimise total trail length and are not determined only by spatial associations, the results suggest that the inter-nest networks produced by ant colonies are influenced by previously unconsidered factors. We show that the transportation networks of polydomous ant colonies balance trail costs with the construction of networks that enable efficient transportation of resources. These networks therefore provide excellent examples of effective biological transport networks which may provide insight into the design and management of transportation systems.  相似文献   

8.
Summary Production of the major subcaste and its contribution to nest survival in the dimorphic ant Colobopsis nipponicus was examined in the field. In this species, the first major workers were reared in the second brood, very early in the colony life cycle. A field experiment demonstrated that artificial colonies without major workers could not survive, whereas colonies with at least one major worker per nest entrance could. Because major workers of C. nipponicus defend the nest entrance by head plugging, the lack of nest defenders in the experimental colonies seemed to be a major cause of nest failure. The defensive value of major workers was much higher than that of minor workers. Many artificial colonies without major workers were displaced by competitors for nest sites, especially by those of other conspecific colonies. In addition, more than 90% of field colonies nested with other conspecific colonies on the same tree. The early production of major workers in C. nipponicus seemed to be very important for the survival of incipient colonies.  相似文献   

9.
Summary Foundresses in pre-emergence and post-emergence nests of Belonogaster petiolata were organized into linear dominance hierarchies according to their level of physical aggression towards cofoundresses. The female at the top of the hierarchy became the queen, while foundresses ranked below her became worker-like subordinates. In pre-matrifilial colonies, worker offspring were socially subordinate to both their queen and the subordinate foundresses. Queens of matrifilial colonies retained full social dominance over their workers. Queens were reproductively dominant over subordinates and workers, and laid the majority of, if not all, surviving eggs. Subordinate-laid eggs were invariably discovered and destroyed by the queen through oophagy; workers in pre-matrifilial and matrifilial colonies never laid or ate eggs. Colonies contained a single (and the same) functional queen throughout the pre- and post-emergence periods and were, therefore, long-term monogynous.In both established pre-emergence colonies and post-emergence colonies, virtually all foraging for food and nesting material was performed by the subordinates and workers. More dominant subordinates generally foraged less than low-ranked subordinates. Queens were more active builders than subordinates or workers in pre-matrifilial and matrifilial colonies. Queens enjoyed a surplus in exchanged food loads, while subordinates and workers did not. Among cofoundresses, an advantage in food exchange was also positively associated with dominance rank. Queens solicited larvae for their salivary fluid more often than did subordinates and workers. Among cofoundresses, frequency of adult-larva trophallaxis was positively associated with rank. Queens rested most often in the central zones of the nest containing late instar larvae and pupae, while subordinates and particularly workers spent more time in the peripheral, broodless regions of the nest.This paper is dedicated to the late Professor Leo Pardi, whose pioneering studies of Belonogaster served as a constant source of inspiration and reference for the present work  相似文献   

10.
Under favorable conditions, the mound-building ant Formica exsecta may form polydomous colonies and can establish large nest aggregations. The lack of worker aggression towards nonnestmate conspecifics is a typical behavioral feature in such social organization, allowing for a free flux of individuals among nests. However, this mutual worker toleration may vary over the seasons and on spatial scales. We studied spatio-temporal variation of worker–worker aggression within and among nests of a polydomous F. exsecta population. In addition, we determined inter- and intracolony genetic relatedness by microsatellite DNA genotyping and assessed its effect on nestmate recognition. We found significant differences in the frequency of worker exchange among nests between spring, summer, and autumn. Moreover, we found significant seasonal variation in the level of aggression among workers of different nests. Aggression levels significantly correlated with spatial distance between nests in spring, but neither in summer nor in autumn. Multiple regression analysis revealed a stronger effect of spatial distances rather than genetic relatedness on aggressive behavior. Because nestmate discrimination disappeared over the season, the higher aggression in spring is most plausibly explained by cue intermixing during hibernation.  相似文献   

11.
Facultatively solitary and eusocial species allow for direct tests of the benefits of group living. We used the facultatively social sweat bee Megalopta genalis to test several benefits of group living. We surveyed natural nests modified for observation in the field weekly for 5 weeks in 2003. First, we demonstrate that social and solitary nesting are alternative behaviors, rather than different points on one developmental trajectory. Next, we show that solitary nests suffered significantly higher rates of nest failure than did social nests. Nest failure apparently resulted from solitary foundress mortality and subsequent brood orphanage. Social nests had significantly higher productivity, measured as new brood cells provisioned during the study, than did solitary nests. After accounting for nest failures, per capita productivity did not change with group size. Our results support key predictions of Assured Fitness Return models, suggesting such indirect fitness benefits favor eusocial nesting in M. genalis. We compared field collections of natural nests to our observation nest data to show that without accounting for nest failures, M. genalis appear to suffer a per capita productivity decrease with increasing group size. Calculating per capita productivity from collected nests without accounting for the differential probabilities of survival across group sizes leads to an overestimate of solitary nest productivity.  相似文献   

12.
The capacity to recognise a conspecific intruder was investigated in Parischnogaster jacobsoni, Liostenogaster flavolineata and L. vechti, three species of primitively social wasps of the subfamily Stenogastrinae. Results of behavioural experiments carried out in the field showed that females of all three species react pacifically if presented with female nestmates, but aggressively reject an intruder from a conspecific colony. As L. flavolineata and L. vechti both build large clusters of nests, often very close to each other, the recognition capacity among females from different nests, but in the same conspecific cluster, was also investigated. Females of both species were more aggressive towards females from a different colony in the same cluster than towards their female nestmates. Additional experiments on L. flavolineata showed that there was no difference in reaction towards females from colonies nearer or further from the tested colony but within the same cluster, nor towards females from a different cluster. The capacity to recognise an alien conspecific nest containing immature brood was investigated in P. jacobsoni. Adult females of this species, invited to land on an alien nest which had experimentally been exchanged for their own, accepted the new nest and partially destroyed the immature brood. The behaviour of the females when they land on an alien nest, however, suggests that they do recognise the nest as foreign. Acceptance of foreign nests coupled with low immature brood destruction is probably due to the high energetic costs of egg-deposition and larval rearing in stenogastrine wasps. These results suggest that nestmate recognition in these wasps is very efficient, even though they belong to the most primitive subfamily of social wasps. Received: 16 April 1996/Accepted after revision: 9 August 1996  相似文献   

13.
Limitation of a necessary resource can affect an organism’s investment into growth and reproduction. Pogonomyrmex harvester ants store vast quantities of seeds in their nests that are thought to buffer the ants when external resources are not available. This research uses externally controlled food availability to examine how resource shortage affects colony investment, resource use, and resource distribution within the nest. Colonies were either starved or supplemented with resources for 2 months, beginning at the onset of reproductive investment and ending immediately before nuptial flights. Fed colonies invested more in overall production, proportionally more in reproduction relative to growth and in female reproductives relative to males. Stored seeds in starved colonies did not buffer production in this study. However, worker fat reserves were depleted in starved colonies, indicating that fat reserves fuel the spring bout of production. In starved colonies, worker fat reserves were depleted evenly throughout the nest, distributing the burden of starvation on all workers regardless of caste and age. A reallocation of diploid eggs into female workers rather than reproductives best explains the observed change in sex ratio investment between treatments. The redistribution of resources into growth relative to reproduction in starved colonies is consistent with life history theory for long-lived organisms, switching from current to future reproduction when resources are scarce.  相似文献   

14.
Foraging activity in social insects should be regulated by colony nutritional status and food availability, such that both the emission of, and response to, recruitment signals depend on current conditions. Using fully automatic radio-frequency identification (RFID) technology to follow the foraging activity of tagged bumblebees (Bombus terrestris) during 16,000 foraging bouts, we tested whether the cue provided by stored food (the number of full honeypots) could modulate the response of workers to the recruitment pheromone signal. Artificial foraging pheromones were applied to colonies with varied levels of food reserves. The response to recruitment pheromones was stronger in colonies with low food, resulting in more workers becoming active and more foraging bouts being performed. In addition to previous reports showing that in colonies with low food successful foragers perform more excited runs during which they release recruitment pheromone and inactive workers are more prone to leave the nest following nectar influx, our results indicate that evolution has shaped a third pathway that modulates bumblebee foraging activity, thus preventing needless energy expenditure and exposure to risk when food stores are already high. This new feedback loop is intriguing since it involves context-dependent response to a signal. It highlights the integration of information from both forager-released pheromones (signal) and nutritional status (cue) that occurs within individual workers before making the decision to start foraging. Our results support the emerging view that responses to pheromones may be less hardwired than commonly acknowledged. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Colonies of the ant Temnothorax albipennis improve their collective performance over successive emigrations (Langridge et al. Behav Ecol Sociobiol 56:523–529, 2004, Behav Ecol Sociobiol 62:447–456, 2008). Here, by analysing the performance of individual transporters (workers that carry the brood, queen and a proportion of adults), we investigate whether they spend less time at the old and new nests during repeated emigrations. Transporters expedited choosing and picking up brood items at the old nest and depositing them in the new nest. Such improvements were not associated with adult transport. Generally, when carrying brood items, but not when carrying adults, transporters visited several locations in the new nest before depositing them. Transporters did not interact with other adults when depositing brood items. Consequently, reductions in depositing times are the sum of time savings made by individual transporters. By contrast, transporters spent most time interacting with other adults before picking up brood items at the old nest. As the frequency of these interactions did not decline, we suggest the behaviours of interacting adults were modified in a way that hastened their completion. Thus, reductions in picking-up times probably occur because of time saved during interactions.  相似文献   

16.
The impact of intranest relatedness on nestmate recognition was tested in a population of polydomous and monodomous nests of the mound-building ant Formica pratensis. Nestmate recognition was evaluated by testing aggression levels between 37 pairs of nests (n=206 tests). Workers from donor colonies were placed on the mounds of recipient nests to score aggressive interactions among workers. A total of 555 workers from 27 nests were genotyped using four DNA microsatellites. The genetic and spatial distances of nests were positively correlated, indicating budding and/or fissioning as spread mechanisms. Monodomous and polydomous nests did not show different aggression levels. Aggression behavior between nests was positively correlated with both spatial distance and intranest relatedness of recipient colonies, but not with genetic distance or intranest relatedness of donor colonies. Multiple regression analysis revealed a stronger effect of spatial distance than of genetics on aggression behavior in this study, indicating that the relative importance of environment and genetics can be variable in F. pratensis. Nevertheless, the positive regression between intranest relatedness of recipient colonies and aggression in the multiple analysis supports earlier results that nestmate recognition is genetically influenced in F. pratensis and further indicates that foreign label rejection most likely explains our data.  相似文献   

17.
Honey bee foragers specialize on collecting pollen and nectar. Pollen foraging behavior is modulated by at least two stimuli within the nest: the presence of brood pheromone and young larvae and the quantity of stored pollen. Genetic variation in pollen foraging behavior has been demonstrated repeatedly. We used selected high and low pollen-hoarding strains of bees that differ dramatically in the quantity of pollen collected to determine if the observed differences in foraging could be explained by differential responses to brood stimuli. Workers from the high and low pollen-hoarding strains and wild-type bees were co-fostered in colonies with either brood or no brood. As expected based on previous studies, returning high pollen-hoarding foragers collected heavier pollen loads and lighter nectar loads than low pollen-hoarding bees. Effects of brood treatment were also observed; bees exposed to brood collected heavier pollen loads and initiated foraging earlier than those from broodless colonies. More specifically, brood treatment resulted in increased pollen foraging in high pollen-hoarding bees but did not affect pollen foraging in low pollen-hoarding bees, suggesting that high pollen-hoarding bees are more sensitive to the presence of brood. However, response to brood stimuli does not sufficiently explain the differences in foraging behavior between the strains since these differences persisted even in the absence of brood.  相似文献   

18.
Summary The honey ant Myrmecocystus mimicus is a scavenger, forages extensively on termites, collects floral nectar, and tends homoptera. Individual foragers of M. mimicus usually disperse in all directions when leaving the nest, but there are also groups of foragers that tend to swarm out of the nest primarily in one direction. Such massive departues are usually at irregular intervals, which may last several hours. The results of field and laboratory experiments suggest that these swarms of foragers are organized by a group recruitment process, during which recruiting scout ants lay chemical orientation trails with hindgut contents and simultaneously stimulate nestmates with a motor display and secretions from the poison gland. Usually these columns travel considerable distances (4–48 m) away from the nest, frequently interfering with the foraging activity of conspecific neighboring colonies.To prevent a neighboring colony from access to temporal food sources or to defend spatiotemporal borders, opposing colonies engage in elaborate display tournaments. Although hundreds of ants are often involved during these tournaments almost no physical fights occur. Instead, individual ants confront each other in highly sterotyped aggressive displays, during which they walk on stilt legs while raising the gaster and head. Some of the ants even seem to inflate their gasters so that the tergites are raised and the whole gaster appears to be larger. In addition, ants involved in tournament activities are on average larger than foragers.The dynamics of the tournament interactions were observed in several colonies over several weeks-mapping each day the locations of the tournaments, the major directions of worker routes away from the nest, and recording the general foraging activities of the colonies. The results indicate that a kind of dominance order can occur among neighboring colonies. On the other hand, often no aggressive interactions among neighboring colonies can be observed, even though the colonies are actively foraging. In those cases the masses of foragers of each colony depart in one major direction that does not bring them into conflict with the masses of foragers of a neighboring colony. This stability, however, can be disturbed by offering a new rich food source to be exploited by two neighboring colonies. This invariably leads to tournament interactions.When a colony is considerably stronger than the other, i.e., with a much larger worker force, the tournaments end quickly and the weaker colony is raided. The foreign workers invade the nest, the queen of the resident colony is killed or dirven off, while the larvae, pupae, callow workers, and honey pot workers are carried or dragged to the nest of the raiders. From these and other observations we conclude that young M. mimicus queens are unlikely to succeed in founding a colony within approximately 3 m of a mature M. mimicus colony because they are discovered and killed, or driven off by workers of the resident colony. Within approximately 3–15 m queens are more likely to start colonies, but these incipient groups run a high risk of being raided and exterminated by the mature colony.Although populations of M. mimicus and M. depilis tend to replace each other, there are areas where both species overlap marginally. Foraging areas and foraging habitats of both species also overlap broadly, but we never observed tournament interactions between M. mimicus and M. depilis.The adaptive significance of the spatiotemporal territories in M. mimicus is discussed.  相似文献   

19.
Solitary foragers can balance demands for food and safety by varying their relative use of foraging patches and their level of vigilance. Here, we investigate whether colonies of the ant, Formica perpilosa, can balance these demands by dividing labor among workers. We show that foragers collecting nectar in vegetation near their nest are smaller than are those collecting nectar at sites away from the nest. We then use performance tests to show that smaller workers are more likely to succumb to attack from conspecifics but feed on nectar more efficiently than larger workers, suggesting a size-related trade-off between risk susceptibility and harvesting ability. Because foragers that travel away from the nest are probably more likely to encounter ants from neighboring colonies, this trade-off could explain the benefits of dividing foraging labor among workers. In a laboratory experiment, we show that contact with aggressive workers results in an increase in the mean size of recruits to a foraging site: this increase was not the result of more large recruits, but rather because fewer smaller ants traveled to the site. These results suggest that workers particularly susceptible to risk avoid dangerous sites, and suggest that variation in worker size can allow colonies to exploit profitably both hazardous and resource-poor patches.Communicated by L. Sundström  相似文献   

20.
In bumblebees all species of the subgenus Psithyrus are social parasites in the nests of their Bombus hosts. In the bumblebee B. terrestris we investigated how colony size influences survival rates of nest entering females of the social parasite Psithyrus vestalis. Furthermore, we studied whether the host worker’s dominance status and age are reflected in its individual scent and whether Psithyrus females use volatiles to selectively kill host workers. The survival rate of Psithyrus vestalis females drops from 100%, when entering colonies with five workers, to 0% for colonies containing 50 host workers. Older host workers, born before the nest invasion, were selectively killed when Psithyrus females entered the nest. In contrast, all workers born after the nest invasion survived. The host workers’ dominance status and age are reflected by their individual odours: newly emerged workers produced a significantly lower total amount of secretions than 4-day-old workers. In chemical analyses of female groups we identified saturated and unsaturated hydrocarbons, aldehydes, and unsaturated wax-type esters of fatty acids. In a discriminant function analysis different worker groups were mainly separated by their bouquets of hydrocarbons. Killed workers release significantly more scent and of a different chemical composition, than survivors. Survivors alter scent production and increase it beyond the level of the killed workers within 1 day of the invasion. The Psithyrus female clearly maintains reproductive dominance utilizing these differences in the odour bouquets as criteria for killing workers that compete for reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号