首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant defense against herbivores often involves constitutive and inducible mechanisms of resistance. Obligate ant-plants, which provide food and housing for ants, are thought to primarily rely on ants for defense against herbivores. This form of plant defense has largely been viewed as static. We have been investigating the dynamic nature of Azteca ants as an inducible defense of Cecropia trees. Ants rapidly recruit to and patrol sites of foliar damage. We propose that Azteca ants can be viewed as an inducible defense for Cecropia trees because of their sensitivity to cues associated with herbivory, their rapid and aggressive recruiting ability, and their reclaimable and redeployable nature as a plant defense. In this study, we examine ant behavior following plant damage, and the potential cues that indude ant recruitment. We found that ants present on leaves when the plant is damaged leave the damaged leaf and recruit other ants to it, presumably by laying recruitment trails. Volatile leaf cues associated with herbivory were important in eliciting an induced response in two experiments. However, we found that cues associated with a congeneric plant elicited a much stronger ant response than conspecific cues. Although the type of leaf damage (gaping wounds versus leaf edge wounds) did not affect the level of ant recruitment, the extent of damage did. Leaves with one hole punched showed a 50% increase in ants, while leaves with five holes punched in them elicited a 100% increase in ant numbers. In sum, it appears that multiple plant-related cues associated with herbivory are involved in induction of ant recruitment in the Cecropia-Azteca system. We discuss the generality of ant responses to herbivory in obligate ant-plant systems, and in facultative ant-plant associations, which may be more common. Received: 23 March 1998 / Accepted after revision: 5 July 1998  相似文献   

2.
Summary. Pyrrolizidine alkaloids (PAs) present a model system in the investigation of tritrophic interactions mediated by plant secondary compounds. However, their toxicity for insect herbivores has never been experimentally proven. Here, we demonstrate the toxic effects of a PA on growth and survival of the eri silk moth Philosamia ricini. In a feeding experiment, larvae of this generalist herbivore fed with an artificial PA diet gained weight significantly slower than control animals, and died as pupae. We suggest that derivatives of the ingested PA N-oxide damage developmental functions during metamorphosis. A tracer test with [14C]senecionine N-oxide revealed that the caterpillars lack adaptations that would prevent conversion of the chemical into the pro-toxic free base. In contrast, the PA adapted leaf beetle Longitarsus anchusae accumulates PAs as N-oxides. We tested the purpose of sequestration in this species as defence against predators. Through a series of prey choice experiments with three carabid predator species, chemically non-protected bark beetle pupae were chosen almost uniformly over L. anchusae pupae. In a following choice test with one of these predators, artificially PA-treated mealworm segments deterred the predator from feeding. Overall the study corroborates the immediate toxic effect of PAs on non-adapted herbivores and the protective effect that adapted insects may gain by sequestering them. It thereby underlines the potential for PAs to play a central role in multitrophic interactions between plants, phytophages and their predators.  相似文献   

3.
Summary. Feeding by belowground herbivores may induce systemic changes in shoot defence levels that affect the performance of above ground herbivores and higher trophic levels. In this paper two wild Brassica species, B. nigra and B. oleracea were experimentally infested with 10 larvae of the cabbage root fly, Delia radicum. Plant dry masses and glucosinolate levels in shoots, main roots, and fine roots were determined at 3, 7, 12 and 14 days after infestation and compared to those of control plants. The systemic response in the leaves differed between plant species. In B. nigra shoot glucosinolate levels in D. radicum infested plants steadily increased with time until they were almost twice those of controls 14 days after infestation. B. oleracea plants infested with D. radicum did not show significant changes in shoot glucosinolate levels within 14 days, which may be due to the unexpected poorer performance of D. radicum on this species. Both plant species showed a local increase in indole glucosinolates in the main roots, which are the preferred feeding site of D. radicum larvae. B. oleracea plants however showed a stronger (1.9 – 4.7 times) increase in indole glucosinolate levels than B. nigra (1.5 – 2.6 times). The increase in indole glucosinolates in B. nigra main roots, was counterbalanced by a significant decrease in aromatic glucosinolate levels. These differences in local responses to D. radicum feeding between the two species may have contributed to the slower growth rates of the larvae on B. oleracea. D. radicum feeding did not result in altered glucosinolate levels in the fine roots in either plant species. The differences in glucosinolate induction patterns between the summer annual B. nigra and the perennial B. oleracea are discussed in the light of their different life histories.  相似文献   

4.
Summary. Mountain birches are deciduous trees consisting of several clonal and partly autonomous ramets. Autumnal moth, Epirrita autumnata, is an extremely harmful pest of mountain birches that during outbreak years may cause the death of trees over large areas. During the larval development of E. autumnata, leaf characters and nutritional suitability vary considerably both temporally and spatially among and within mountain birches. Compared to variation between trees, however, the extent of within-tree variation is known for only a limited number of potentially defensive traits. Plant oxidases, polyphenoloxidases (PPOs) and peroxidases (PODs) may play an important part in dictating the suitability of a tree for plant-eating animals, including E. autumnata. In this study, we observed changes in the activities of oxidative and antioxidative enzymes along leaf development during the larval period of E. autumnata. We also estimated the relative amounts of spatial variation among and within trees. Our results show that POD activities were remarkably high during the rapid elongation growth phase of leaves but decreased with leaf maturation. Thus PODs are suggested to take part in leaf elongation growth. Time and within tree variation accounted for the most of variation in POD activities whereas there was no among tree variation. In contrast, the activities of antioxidative CATs, which act as antagonists to PODs, were low in young leaves and increased towards leaf maturation, reflecting an increase in the oxidative status of source leaves. Within tree variation accounted for the most of the variation in CAT activities. The absolute PPO activities decreased along leaf growth due to the dilution effect whereas the specific activity of PPOs, which has been shown to be defensive against E. autumnata larvae, did not vary temporally that might reflect the importance of these enzymes in the defence of birches. Acidic PPOs showed marked within- and among-tree variation, which may impact herbivores performance on certain genotypes and increase larval mobility within the tree canopy.  相似文献   

5.
Summary. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), sequester glucosinolates of their host plants, namely members of the Brassicaceae family, in their haemolymph. Therefore, they need to circumvent myrosinase activities of the plant tissue which normally hydrolyse the glucosinolates after plant damage. Effects of varying levels of glucosinolates and myrosinases on the performance of A. rosae were investigated using homozygous lines of Brassica juncea (L.) with either (1) low glucosinolate (lowGS) and low myrosinase (lowMR), (2) high glucosinolate (highGS) and high myrosinase (highMR), or (3) high glucosinolate (highGS) and low myrosinase (lowMR) levels. To insure that the given quantities remained as constant as possible, newly hatched larvae were enclosed on the second-youngest leaf of a plant, and were offered a new plant of comparable physiological age (6-leaf-stage) every day. The performance of A. rosae was little affected by leaf quality. Body masses of eonymphs and adults were on average lowest on the highGS/highMR-line, but these differences were rarely significant. The pupal developmental times of females and males were longest on the highGS/lowMR-line in only one of two replicate experiments. All other performance traits (developmental times of larvae, egg numbers, adult longevity) were not significantly different. Glucosinolates, sequestered by the larvae, are carried through the pupal stage. The glucosinolate concentration measured in adult insects reflected the level of the host plant line, without showing any obvious costs for sequestration. Obviously, A. rosae is highly tolerant to variation in the glucosinolate-myrosinase system of its host. In addition, induced changes of glucosinolate concentrations and myrosinase activities caused by 24 h-feeding of groups of three small larvae were analysed in the second-youngest leaves. In contrast to the patterns most herbivores evoke on Brassicaceae, namely an increase of both glucosinolate concentration and myrosinase activity, we detected a significant decrease of both traits in all three lines where the respective trait was originally high in the plants. Although glucosinolate levels dropped in the highGS lines about 50%, these still contained higher concentrations than the lowGS line. Whereas the activity of soluble myrosinases remained highest in the highMR line, even after a decrease to almost 30% due to feeding, the levels of insoluble myrosinases converged after feeding in lowMR and highMR lines. Levels of the signalling molecule salicylic acid slightly decreased on average after feeding, whereas jasmonic acid was below the detection threshold in almost all samples. The concentration of several molecules varies strongly in plant tissue with age and can change due to induction by herbivore feeding. Therefore, if performance of an insect species is measured on plants with specific traits, the variability in these traits needs to be carefully controlled in experiments.  相似文献   

6.
Mutualisms can be exploited by parasites—species that obtain resources from a partner but provide no services. Though the stability of mutualisms in the presence of such parasites is under intensive investigation, we have little information on life history traits that allow a species to be a successful mutualist or rather a parasite, particularly in cases where both are closely related. We studied the exploitation of Acacia myrmecophytes by the ant, Pseudomyrmex gracilis, contrasting with the mutualistic ant Pseudomyrmex ferrugineus. P. gracilis showed no host-defending behavior and had a negative effect on plant growth. By preventing the mutualist from colonization, P. gracilis imposes opportunity costs on the host plant. P. gracilis produced smaller colonies with a higher proportion of alates than did the mutualist and thus showed an “r-like” strategy. This appears to be possible because P. gracilis relies less on host-derived food resources than does the mutualist, as shown by behavioral and stable isotope studies. We discuss how this system allows the identification of strategies that characterize parasites of mutualisms.  相似文献   

7.
Summary. Oviposition site selection of herbivorous insects depends primarily on host plant presence which is essential for offspring survival. However, parasitoids can exploit host plant cues for host location. In this study, we hypothesised that herbivores can solve this dilemma by ovipositing within high plant diversity. A diverse plant species composition might represent an ‘infochemical shelter’, as a potentially complex volatile blend can negatively affect the host location ability of parasitoids. We examined this exemplarily for the egg-laying response of the generalist leaf beetle, Galeruca tanaceti, in relation to (1) host plant availability and (2) plant species diversity in the field. Further, we investigated the effect of odours from mixed plant species compositions on (3) leaf beetle oviposition site selection and on (4) the orientation of its specialised egg parasitoid, Oomyzus galerucivorus. In the field, egg clutch occurrence was positively related to the presence and quantity of two major host plants, Achillea millefolium (yarrow) and Centaurea jacea, and to the number of herbaceous plant species. In two-choice bioassays, female beetles oviposited more frequently on sites surrounded by an odour blend from a diverse plant species composition (including yarrow) than on sites with a pure grass odour blend. In the presence of yarrow odour and an odour blend from a diverse plant mixture (including yarrow) no difference in the oviposition response was recorded. Experienced parasitoid females were attracted to yarrow odours, but showed no response when yarrow odours were offered simultaneously with odours of a non-host plant. In conclusion, it could be shown in laboratory bioassays that the parasitoid responds only to pure host plant odours but not to complex odour blends. In contrast, the herbivore prefers to oviposit within diverse vegetation in the field and in the laboratory. However, the laboratory results also point to a priority of host plant availability over the selection of a potential ‘infochemical shelter’ for oviposition due to high plant diversity.  相似文献   

8.
加拿大一枝黄花(Solidago canadensis)和小飞蓬(Conyza canadensis)常共同入侵至同一农田生态系统。探究了两者对大豆幼苗生长的复合化感作用。加拿大一枝黄花叶浸提液显著抑制大豆幼苗地上生物量。而小飞蓬叶浸提液也明显抑制大豆幼苗地上生物量(未达到显著水平)。与对照处理相比,两者复合叶浸提液处理未显著影响大豆幼苗地上生物量。两者复合叶浸提液处理下大豆幼苗地上生物量显著大于加拿大一枝黄花叶浸提液单一处理,同时也大于小飞蓬叶浸提液单一处理(未达到显著水平)。两者叶浸提液单一处理均明显降低大豆幼苗株高(未达到显著水平)。与对照处理相比,两者复合叶浸提液处理未显著影响大豆幼苗株高。两者复合叶浸提液处理下大豆幼苗株高明显大于两者叶浸提液单一处理(未达到显著水平)。因此,两者叶浸提液对大豆幼苗的生长均具有一定程度的抑制效应,且加拿大一枝黄花叶浸提液对大豆幼苗产生的化感作用(尤其是地上生物量)明显大于小飞蓬。两者复合化感作用明显低于两者单一化感作用,尤其是两者对大豆幼苗地上生物量的复合化感作用显著低于加拿大一枝黄花的单一化感作用。所以,化感效应可能在两者共同入侵(即两者复合作用)进程中所起的贡献低于在两者单一入侵进程中所起的作用。  相似文献   

9.
In some mutualisms, a plant or insect provides a food resource in exchange for protection from herbivores, competitors or predators. This food resource can benefit the consumer, but the relative importance of different mechanisms responsible for this benefit is unclear. We used a colony-level simulation model to test the relative importance of increased larval production, increased worker foraging and increased worker survival for colony growth of fire ants, Solenopsis invicta, that consume plant-based foods. Increased food for larvae had the largest effect on colony growth of S. invicta followed by decreased worker mortality. Increased foraging rate had a small effect in the simulation model but data from a small laboratory experiment and another published study suggest that plant-based foods have little or no effect on foraging rates of S. invicta. Colony growth steadily increased the longer plant-based food was available and colonies were most responsive to plant-based food in the early summer (i.e., June). Our results demonstrate that population level simulation modeling can be a useful tool for examining the ecology of mutualistic interactions and the mechanisms through which species interact.  相似文献   

10.
Summary Analyses of leaf extracts ofDicerandra frutescens, a highly aromatic mint plant from central Florida listed as an endangered species, revealed presence of 12 closely related monoterpenes. The principal of these, (+)—trans-pulegol, is a new natural product, the synthesis of which is described. The terpenes are produced in glandular capsules that release their contents upon injury of the leaf. Data from bioassays with ants and cockroaches indicate that the terpenes serve for defense against insects.Dicerandra does, however, have a leaf-eating enemy, the caterpillar of a pyralid moth,Pyrausta panopealis. The discovery of a new natural product from an endangered species raises questions about the chemical implications of species extinction.  相似文献   

11.
Palmer TM  Brody AK 《Ecology》2007,88(12):3004-3011
The foundation of many plant-ant mutualisms is ant protection of plants from herbivores in exchange for food and/or shelter. While the role of symbiotic ants in protecting plants from stem- and leaf-feeding herbivores has been intensively studied, the relationship between ant defense and measures of plant fitness has seldom been quantified. We studied ant aggression, damage by herbivores and seed predators, and fruit production among Acacia drepanolobium trees occupied by four different acacia-ant species in an East African savanna. Levels of ant aggression in response to experimental disturbance differed strongly among the four species. All four ant species recruited more strongly to new leaf growth on host plants following disturbance, while recruitment to developing fruits was on average an order of magnitude lower. Host plants occupied by more aggressive ant species suffered significantly less vegetative damage from leaf-feeding insects, stem-boring beetles, and vertebrate browsers than host plants occupied by less aggressive ant species. However, there were no differences among fruiting host plants occupied by different ant species in levels of seed predation by bruchid seed predators. Fruit production on host trees was significantly correlated with tree stem diameter but not with the identity of resident ants. Our results demonstrate that defense of host plants may differ substantially among ant species and between vegetative and reproductive structures and that fruit production is not necessarily correlated with high levels of aggression by resident ants.  相似文献   

12.
Summary. Myrmecophytic plants use obligate ant mutualists as a constitutive indirect defence mechanism. These plants often produce cellular food bodies (FBs) to nourish their resident ants. Lipids, proteins, and even highly specialised compounds such as glycogen have been reported from FBs, but detailed chemical analyses of FB composition have so far been presented only for Southeast Asian Macaranga and Central American Piper myrmecophytes. Here we report the chemical composition of FBs of five myrmecophytic Acacia (Fabaceae) species from Mexico using HPLC (carbohydrates and proteins) and GC-MS (lipids). Feeding experiments revealed no hints on any use of external food sources by the inhabiting Pseudomyrmex ants. These ants obviously rely completely on FBs and extrafloral nectar provided by their hosts. The total content of nutrients in Acacia FBs was 15-25% of FB dry mass, being much lower than in Macaranga or Piper FBs. Proteins were dominating (8-14 % dm) in Acacia FBs and thus were present in higher amounts than in Macaranga FBs, yet in lower amounts than in Piper. Lipids contributed 1-9 % of dry mass, showing a lower proportion than in FBs of Macaranga or Piper. Carbohydrates made up 3-11 % dm, reaching in most Acacia species the same range as observed in Macaranga and in Piper FBs. Water content was 18-24 % of FB fresh mass, and structural tissue obviously made up a much higher proportion in Acacia FBs than in Macaranga or Piper FBs. Both characters might represent an adaptation to producing FBs unprotected at the leaf tips under dry conditions. Acacia FBs contain all amino acids and all fatty acids that are considered essential for insects, and their contents of lipids and proteins are higher than in the leaves from which they are ontogenetically derived. This indicates a putatively adaptive enrichment of nutritionally valuable compounds in structures functioning as ant-food.  相似文献   

13.
We investigated how morphological traits of territorial males in the polygynous bat Saccopteryx bilineata were related to their reproductive success. Because of the frequency of aerial courtship displays and defence manoeuvres, and the high energetic costs of flight, we expected small and symmetric males to be better able to court females on the wing and to monopolize copulations with females in their harems. We predicted that small and symmetric males would sire more offspring within the colony and a larger portion of the young born within their harem than large or asymmetric males. We measured size and fluctuating asymmetry of 21 territorial males and analysed their reproductive success in 6 offspring cohorts (n=209 juveniles) using 11 microsatellite loci. As predicted, small and symmetric males had, on average, a higher reproductive success in the colony than large and asymmetric males. The percentage of young sired by males within their harem increased as males decreased in size, but was not influenced by fluctuating asymmetry. As fluctuating asymmetry of males correlated with their reproductive success within the colony but not within their harems, we infer that fluctuating asymmetry is probably related to female choice, whereas male size is probably important for harem defence on the wing.Communicated by G. Wilkinson  相似文献   

14.
Summary. Easy bleeding is a phenomenon discovered in some tenthredinid insects which possess a particularly low mechanical resistance of the integument, leading under mechanical stress to haemolymph exudation. It has a defensive effect against ants and wasps through harmful plant compounds which are sequestered in the haemolymph. Here we describe etho-ecological and some chemical aspects of the defence of easy bleeders and specify the range of predators to which easy bleeding might be effective. Beside a high haemolymph deterrence associated with low integument resistance across sawfly species, we also detected toxicity of the haemolymph of some species to workers of the ant Myrmica rubra. The behaviour of easy bleeders is to move slowly and, once disturbed, to become motionless, thereby probably impeding the tendency of a predator to attack. This behaviour had no beneficial effect for easy bleeders when attacked by the predatory bug Podisus maculiventris. Bugs could successfully and without harm prey on sawfly larvae without evoking easy bleeding. For the easy bleeder Athalia rosae, host plants with different secondary metabolite profiles, and, consequently, changes in haemolymph chemistry only slightly affected the feeding behaviour of the bugs. To test the effectiveness of easy bleeding towards a vertebrate predator, easy bleeders were offered to birds, Sturnus vulgaris. The body colouration of the sawfly larvae was of prime importance in determining the predators response when testing birds in a group. It is likely that easy bleeding is a defence strategy directed primarily towards foraging insects with biting-chewing mandibles and that it is much less active towards predatory insects with piercing-sucking mandibles as well as birds. The involvement of chemical and/or physical cues in the strategy is discussed with respect to these types of predators.  相似文献   

15.
The most frequently investigated defence mechanism among larvae of tortoise beetles is protection by faecal shields, which generally present chemicals that are directly sequestered and/or modified from larval host-plants. In the present work we investigate the tortoise beetle Chelymorpha reimoseri that feeds on the leaves of Ipomoea carnea fistulosa (Convolvulaceae), seeking for the importance of this mechanism to their larvae. We show that 4th instar larvae suffer low predation regardless of the presence of shields in field and laboratory bioassays with ants and chicks. Chloroform extract from larvae without shields provided high protection against predation as shown in bioassays in the field, as well as against chicks, suggesting that C. reimoseri does not rely on the shield for protection. The aqueous extract of the shields did not show activity in such bioassays. The compounds responsible for this protection have yet to be identified, and it remains an open question as to whether they are sequestered from the host plant or de novo biosynthesized. This is the first record of chemical defence in cassidine beetles without the need for faecal shields. These findings indicate that more attention should be paid to chemicals present in the tissues of larvae and/or adults of tortoise beetles; the protective compounds sequestered from host plants or de novo biosynthesized can provide an alternative or complementary strategy against predation in these insects.  相似文献   

16.
Ness JH  Morris WF  Bronstein JL 《Ecology》2006,87(4):912-921
Generalized, facultative mutualisms are often characterized by great variation in the benefits provided by different partner species. This variation may be due to differences among species in the quality and quantity of their interactions, as well as their phenology. Many plant species produce extrafloral nectar, a carbohydrate-rich resource, to attract ant species that can act as "bodyguards" against a plant's natural enemies. Here, we explore differences in the quality and quantity of protective service that ants can provide a plant by contrasting the four most common ant visitors to Ferocactus wislizeni, an extrafloral nectary-bearing cactus in southern Arizona. The four species differ in abundance when tending plants, and in the frequency at which they visit plants. By adding surrogate herbivores (Manduca sexta caterpillars) to plants, we demonstrate that all four species recruit to and attack potential herbivores. However, their per capita effectiveness in deterring herbivores (measured as the inverse of the number of workers needed to remove half of the experimentally added caterpillars) differs. Using these among-species differences in quality (per capita effectiveness) and quantity (number of workers that visit a plant and frequency of visitation), we accurately predicted the variation in fruit production among plants with different histories of ant tending. We found that plant benefits (herbivore removal and maturation of buds and fruits) typically saturated at high levels of ant protection, although plants could be "well defended" via different combinations of interaction frequency, numbers of ant workers per interaction, and per capita effects. Our study documents variation among prospective mutualists, distinguishes the components of this variation, and integrates these components into a predictive measure of protection benefit to the plant. The method we used to average saturating benefits over time could prove useful for quantifying overall service in other mutualisms.  相似文献   

17.
Summary. Soil organisms in direct and indirect interaction with plant roots affect aboveground herbivores, likely by inducing different plant responses. We investigated the combined effects of the root-knot nematode Meloidogyne incognita (in direct interaction with roots) and the endogeic earthworm Octolasion tyrtaeum (in indirect interaction with roots) on the performance of Brassica oleracea. Both earthworms and nematodes increased N uptake and shoot biomass of B. oleracea. Earthworm activity mobilized more soil N than litter N, and herbivory by nematodes tended to increase the microbial biomass in soil. Only the structural class of sulphur containing glucosinolates was affected by the soil organisms. Earthworms decreased glucoiberin concentrations in B. oleracea shoots. Glucoraphanin was affected by an interaction between earthworms and nematodes.  相似文献   

18.
Garden black ants,Lasius niger L., in a laboratory colony, attacked three species of live ladybirds found near their nest, killing the smaller two species. A second colony was offered artificial diets containing crushed ladybirds of two species, and the ants' choice of feeding site noted. Both the diets were aversive compared to control, but that containing 7spot,Coccinella septempunctata L., was more aversive than the diet containing 2spot,Adalia bipunctata L. The implications of this lesser protection for 2spots in terms of the chemical defence of the species are discussed.  相似文献   

19.
Because many secondary metabolites in plants act as defense against herbivores it has been postulated that these compounds have evolved under selective pressure by insect herbivores. One explanation for the within-species variation in metabolite patterns in a particular species is that different populations are under selection by different herbivores. We tested this hypothesis, using Arabidopsis thaliana plants that originated from dune and inland areas. We analyzed Arabidopsis thaliana leaves using NMR spectroscopy and multivariate data analysis. Major differences in chemical composition were found in water-methanol fractions and were due to higher concentrations of sinigrin and fumaric acid in dune plants. Inland plants showed lower levels of glucose. Quantitative analysis of glucosinolates was performed with HPLC. Individual plants and populations demonstrated differences in glucosinolate composition and concentration. In growth chamber experiments, the generalist herbivore, Spodoptera exigua grew significantly better on the inland plants, while the specialist herbivore Plutella xylostella performed equally well on plants of both origins. Aliphatic glucosinolate as well as total glucosinolate concentrations negatively correlated with larval mass of Spodoptera exigua. No significant correlations, however, were found between larval mass of Plutella xylostella and glucosinolates in the leaves. A specialist and a generalist herbivore were responding differently to plant secondary chemistry, as was also found in several other studies. This is an important indication that differences in glucosinolate concentrations among populations may result from differential selection by different guilds of herbivores.  相似文献   

20.
Summary. Conium maculatum is an apiaceous species native to Eurasia that is highly toxic to vertebrates due to the presence of piperidine alkaloids, including coniine and γ-coniceine. More than 200 years after invading the United States this species remains mostly free from generalist insect herbivores. The presence of novel chemical defenses in the introduced range could provide invasive species with a competitive advantage relative to native plants. The cabbage looper (Trichoplusia ni) is a generalist lepidopteran found throughout the US that occasionally feeds on C. maculatum. We evaluated the toxicity of piperidine alkaloids to T. ni and determined putative resistance mechanisms, both behavioral and physiological, that allows this insect to develop successfully on C. maculatum foliage. T. ni larvae raised on diets enriched with coniine and γ-coniceine showed a decrease in consumption and longer development time, but no effects on growth were found at any alkaloid concentration. In a diet choice experiment T. ni larvae showed no avoidance of alkaloid-enriched diets, suggesting that the deterrence produced by alkaloids was related to a post-ingestive metabolic response. The ability of T. ni to consume diets high in alkaloid content could be due to at least three different mechanisms: 1) a decreased consumption rate, 2) efficient excretion of at least 1/3 of ingested alkaloids unmetabolized in frass, and 3) partial detoxification of alkaloids by cytochrome P450 s, as shown by the decreased larval growth in the presence of piperonyl butoxide, a P450 inhibitor. Even though T. ni tolerates C. maculatum alkaloids, the use of this species as a host plant could be ecologically disadvantageous due to prolonged larval growth and thus increased exposure to predators. Novel plant secondary compounds do not guarantee increased resistance to generalist herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号