首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.
This study was carried out to assess fluoride (Fl) concentration in groundwater in some villages of central Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected from deep aquifer-based hand pumps were analyzed for Fl content. Fluoride in groundwater of 121 habitations of Bhilwara tehsil of Bhilwara district of Rajasthan was determined to examine the potential Fl-induced toxicity in rural locations. Fluoride concentrations in the tehsil ranged from 0.5 to 5.8 mg/l. In the tehsil, 69 villages (57%) were found to have Fl concentration beyond the maximum desirable limit recommended in Bureau of Indian Standards (BIS), 10500, 1991. Fifty-eight percent population of these villages was under the threat of fluorosis. One percent population of tehsil living in two villages ingested more than 5 mg/l Fl in each liter of drinking water and at maximal risk for dental and skeletal fluorosis. 142 individuals of these villages were examined for fluorosis. Data indicated that only four individuals (2.82%) did not exhibit dental fluorosis. Most individuals were found to suffer from mild (34.51% or 49 individuals) and moderate (31.69% or 45 individuals) fluorosis. Severe dental fluorosis was recorded in only 16 individuals (11.27%). In 104 individuals above 21 years of age examined for the prevalence of skeletal fluorosis, 66 were positive for skeletal fluorosis with a maximum 36.5% with grade I skeletal fluorosis. Grade II skeletal fluorosis was recorded in 28 individuals (26.9%). Data in this study demonstrate that there is a need to take ameliorative steps in this region to prevent fluorosis.  相似文献   

2.
This research work is carried out to evaluate fluoride (F) hydrogeochemistry and its effect on the population of two endemic villages of Birbhum district, West Bengal. Fluoride concentration in drinking water varies from 0.33 to 18.08 mg/L. Hydrogeochemical evolution suggests that ion-exchange mechanism is the major controlling factor for releasing F in the groundwater. Most of the groundwater samples are undersaturated with respect to calcite and fluorite. Health survey shows that out of 235 people, 142 people suffer from dental fluorosis. According to fluoride impact severity, almost 80 and 94 % people in an age group of 11–20 and 41–50 suffer from dental and skeletal fluorosis, respectively. Statistically drinking water F has a positive correlation with dental and skeletal fluorosis. Bone mineral density test reveals that 33 and 45 % of the studied population suffer from osteopenic and osteoporosis disease. IQ test also signifies that F has a bearing on the intelligence development of the study area school children. The existence of significant linear relationship (R 2 = 0.77) between drinking water F and urinary F suggests that consumption of F-contaminated drinking water has a major control over urinary F (0.39–20.1 mg/L) excretion.  相似文献   

3.
Fluoride (F) is mainly ingested through drinking water and food. In addition to producing dental and skeletal fluorosis, excess fluoride may affect the functioning of many organs including the thyroid gland. The present study investigated the thyroid function of subjects with dental fluorosis from F-endemic areas of Gaya region, Bihar, India and compared it with control individuals from Bodh Gaya. The mean F concentration in groundwater of F-endemic area was 2.82 ± 0.18 mg/L (range 0.62–7.2 mg/L), while that of control area was 0.49 ± 0.04 mg/L (range 0.21–0.76 mg/L). Abnormal levels of T3, T4, and TSH were found in the study subjects from both control and F-endemic areas.  相似文献   

4.

Bedrock groundwaters in Geumsan County, Korea, were surveyed to investigate the distribution and geochemical behaviors of arsenic and fluoride, mobilized through geogenic processes. The concentrations were enriched up to 113 μg/L for arsenic and 7.54 mg/L for fluoride, and 16% of 150 samples exceeded World Health Organization drinking water guidelines for each element. Simple Ca-HCO3 groundwater types and positive correlations with pH, Ca, SO4, and HCO3 were characteristics of high (>10 μg/L) As groundwaters. The oxidation reaction of sulfide minerals in metasedimentary rocks and locally mineralized zones seems to be ultimately responsible for the existence of arsenic in groundwater. Desorption process under high pH conditions may also control the arsenic mobility in the study area. High (>1.5 mg/L) F groundwaters were found in the Na-HCO3 type and with greater depth. Fluoride seemed to be enriched by deep groundwater interaction with granitic rocks, and continuous supply to shallow Ca-HCO3-type groundwater kept the concentration high. In the study area, drinking water management should include periodic As and F monitoring in groundwater.

  相似文献   

5.
Several million people are exposed to fluoride (F?) via drinking water in the world. Current review emphasized the elevated level of fluoride concentrations in the groundwater and associated potential health risk globally with a special focus on Pakistan. Millions of people are deeply dependent on groundwater from different countries of the world encompassing with an elevated level of fluoride. The latest estimates suggest that around 200 million people, from among 25 nations the world over, are under the dreadful fate of fluorosis. India and China, the two most populous countries of the world, are the worst affected. In Pakistan, fluoride data of 29 major cities are reviewed and 34% of the cities show fluoride levels with a mean value greater than 1.5 mg/L where Lahore, Quetta and Tehsil Mailsi are having the maximum values of 23.60, 24.48, > 5.5 mg/L, respectively. In recent years, however, other countries have minimized, even eliminated its use due to health issues. High concentration of fluoride for extended time period causes adverse effects of health such as skin lesions, discoloration, cardiovascular disorders, dental fluorosis and crippling skeletal fluorosis. This review deliberates comprehensive strategy of drinking water quality in the global scenario of fluoride contamination, especially in Pakistan with prominence on major pollutants, mitigation technologies, sources of pollution and ensuing health problems. Considering these verities, health authorities urgently need to establish alternative means of water decontamination in order to prevent associated health problems.  相似文献   

6.
For study, the fluoride (F) content and distribution pattern in groundwater of eastern Yunnan and western Guizhou fluorosis area in southwestern China, the F content of 93 water samples [groundwater (fissure water, cool spring, and hot springs), rivers water] and 60 rock samples were measured. The result shows the F content of the fissure water and cold spring water is 0.027–0.47 mg/L, and river water is 0.048–0.224 mg/L. The F content of hot spring water is 1.02–6.907 mg/L. The drinking water supplied for local resident is mainly from fissure water, cool spring, and river water. And the F content in all of them is much lower than the Chinese National Standard (1.0 mg/L), which is the safe intake of F in drinking water. The infected people in eastern Yunnan and western Guizhou fluorosis area have very little F intake from the drinking water. The hot spring water in fluorosis area of eastern Yunnan and western Guizhou, southwest China has high F content, which is not suitable for drinking.  相似文献   

7.
High fluoride concentrations (up to 11 mg/L) have been reported in the groundwater of the Guarani Aquifer System (Santa Maria Formation) in the central region of the state of Rio Grande do Sul, Southern Brazil. In this area, dental fluorosis is an endemic disease. This paper presents the geochemical data and the combination of statistical analysis (Principal components and cluster analyses) and geochemical modeling to achieve the hydrogeochemistry of the groundwater and discusses the possible fluoride origin. The groundwater from the Santa Maria Formation is comprised of four different geochemical groups. The first group corresponds to a sodium chloride groundwater which evolves to sodium bicarbonate, the second one, both containing fluoride anomalies. The third group is represented by calcium bicarbonate groundwater, and in the fourth, magnesium is the distinctive parameter. The statistical and geochemical analyses supported by isotopic measurements indicated that groundwater may have originated from mixtures of deeper aquifers and the fluoride concentrations could be derived from rock/water interactions (e.g., desorption from clay minerals).  相似文献   

8.
There is a severe fluoride problem in Nawa tehsil of Nagaur district. Villagers are suffering from dental fluorosis and skeletal fluorosis. So an extensive geochemical study of 27 villages of eastern, south-eastern and southern zone of Nawa tehsil was done. Total 46 ground water samples were collected and analyzed for various physicochemical parameters as well as fluoride content. The ground water samples collected in clean polyethylene plastic containers were analyzed for pH, electrical conductivity, total dissolved salts, calcium, magnesium, total hardness, chloride and alkalinity. The fluoride concentration in the three different zones ranged from 0.64 to 14.62 mg l(-1) where 13.04% samples were found within permissible limit while 86.96% had fluoride beyond permissible limit (> 1.5 mg l(-1)). It was found that among the three different zones south-eastern zone was under serious fluoride contamination where fluoride concentration ranged between 1.10 to 14.62 mg l(-1). In the eastern zone fluoride concentration was recorded from 1.52 to 5.13 mg l(-1) whereas in the southern zone it was found between 0.64 to 3.63 mg l(-1).  相似文献   

9.
The present study is the first attempt to put forward possible source(s) of fluoride in the Dashtestan area, Bushehr Province, southern Iran. In response to reports on the high incidence of dental fluorosis, 35 surface and groundwater samples were collected and analysed for fluoride. The results indicate that dissolved fluoride in the study area is above the maximum permissible limit recommended by the World Health Organization (WHO). An additional 35 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The results of these analyses show that the most likely source for fluoride in the groundwater is from clay minerals (chlorite) and micas (muscovite, sericite, and biotite) in the soils and rocks in the area. We also note that due to the high average temperatures all year round and excessive water consumption in the area, the optimum fluoride dose level should be lower than that recommended by the WHO.  相似文献   

10.
Dental and skeletal fluorosis is widespread in the Ethiopian Rift Valley region. Drinking water has been considered the main reason for the development of fluorosis, but dietary intake may also be a contributor in areas with high concentration of fluoride in water, soil, and biota. The purpose of this study is to assess the total daily dietary fluoride intake by adults in a rural part of the Ethiopian Rift Valley. The food, beverage, and water samples were collected from selected households of three neighboring villages with similar dietary pattern, but with different fluoride content in their water sources. Village A uses water with 1.0 mg L?1 fluoride, village B uses water with 3.0 mg L?1 fluoride, and village C uses water with 11.5 mg L?1 fluoride both for food preparation and for drinking. The level of fluoride was determined in all food ingredients, in the prepared food, beverages, and in the water used for food preparation and drinking. Recipe and food frequency questionnaires were used to gather household food preparation and consumption patterns. An alkali fusion method was used for digestion of food samples and for subsequent determination of fluoride with ion-selective electrode. The daily fluoride intake varied depending on its concentration in the water used for cooking and drinking. In households using water with 1 mg L?1, 3 mg L?1, and 11.5 mg L?1 fluoride, the total personal intake was found to be 10.5, 16.6, and 35.3 mg d?1, respectively. Contribution of the water to the daily fluoride intake was 33%, 58%, and 86%, respectively. Even in households using water containing fluoride at a concentration of 1 mg L?1, the daily intake was higher than the recommended safe intake of 1.5–4.0 mg d?1 for adults, which indicates that the fluoride intake through food may cause health risks. Minimizing the fluoride concentration in water to the lowest possible level will greatly reduce the daily intake. The form of fluorine (organic or inorganic) in the food items and the associated health risk factors need further investigation.  相似文献   

11.
Fluoride concentration of groundwater reserves occurs in many places in the world. A critical area for such contamination in India is alluvial soil of the plain region, consisting of five blocks (Jhajjar, Bahadurgarh, Beri, Matanhail, and Sahalawas) of the Jhajjar District adjacent to the National Capital Territory of India, New Delhi. The purpose of this study was to assess the association between water fluoride levels and prevalence of dental fluorosis among school children of the Jhajjar District of Haryana, India. The fluoride content in underground drinking water sources was found to vary in villages. Hence, the villages were categorized as high-fluoride villages (1.52–4.0 mg F/l) and low/normal-fluoride villages (0.30–1.0 mg F/l). The source of dental fluorosis data was school-going children (7–15 years) showing different stages and types of fluorosis who were permanent resident of these villages. The fraction of dental fluorosis-affected children varied from 30% to 94.85% in the high-fluoride villages and from 8.80% to 28.20% in the low/normal-fluoride villages. The results of the present study revealed that there existed a significant positive correlation between fluoride concentration in drinking water and dental fluorosis in high-fluoride villages (r = 0.508; p < 0.001) and insignificant correlation in low-fluoride villages.  相似文献   

12.
The junction area of Yunnan, Guizhou, and Sichuan provinces is the heaviest coal-burning endemic fluorosis zones in China. To better understand the pathogenicity of endemic fluorosis in this area, 87 coal samples from the late Permian outcrop or semi-outcrop coal seams were collected in eight counties of the junction area of Yunnan, Guizhou, and Sichuan provinces. The total fluorine and sulfate content, etc. in the coal was determined using combustion-hydrolysis/fluoride-ion-selective electrode method and ion chromatography, respectively. The results show that the total fluorine concentrations in the samples ranged from 44 to 382 µg g?1, with an average of 127 µg g?1. The average pH of the coals is 5.03 (1.86–8.62), and the sulfate content varied from 249 to 64,706 µg g?1 (average 7127 µg g?1). In addition, the coals were medium- and high-sulfur coals, with sulfur mass fraction ranging from 0.08 to 13.41%. By heating the outcrop coals, HF release from the coal was verified quantitatively without exception, while simulated combustion directly confirmed the release of sulfuric acid (H2SO4). The acid in coal may be in the form of acidic sulfate (\({\text{HSO}}_{4}^{ - }\)/H2SO4) because of a positive relationship between pH and \(p\left( {{\text{SO}}_{4}^{2 - } } \right)\) in the acidic coal. The possible reaction mechanism would be that a chemical reaction between the acid (H2SO4 or \({\text{HSO}}_{4}^{ - }\)) and fluorine in the coal occurred, thereby producing hydrogen fluoride (HF), which would be the chemical form of fluorine released from coal under relatively mild conditions. The unique chemical and physical property of HF may bring new insight into the pathogenic mechanism of coal-burning endemic fluorosis. The phenomenon of coal-burning fluorosis is not limited to the study area, but is common in southwest China and elsewhere. Further investigation is needed to determine whether other endemic fluorosis areas are affected by this phenomenon.  相似文献   

13.

The aim of this study was to investigate and determine fluoride concentrations in drinking water supplies in rural areas of Maku and Poldasht in West Azerbaijan Province, the northwest of Iran. Fluorosis risk assessment and characterization was also investigated. Fluoride concentrations mapping was accomplished by using the GIS system. Totally, 356 water samples, including one sample in each season, were collected from 89 water supplies providing water for 95 and 61 rural areas of Maku and Poldasht, respectively. According to the results, in Maku and Poldasht, 25 and 30 rural areas had contaminated water sources, respectively. Average annual fluoride concentrations ranged from 3.04 to 7.31 mg/l in the contaminated villages of Maku, which is about 2–4.8 times higher than the maximum standard level of the Iranian drinking water standard, and 4.52–8.21 mg/l in the contaminated areas of Poldasht, which is about 3–5.47 times higher than the maximum standard level. The maximum fluoride level was determined 11.12 mg/l and 10.98 mg/l in one of villages of Maku and Poldasht Counties in summer, respectively. Neither in Maku nor in Poldasht, water resources showed dental cavity risk, while dental fluorosis risk and skeletal fluorosis risk were very significant in some villages of both cities. Children were at most risk of fluorosis. New alternative water supplies for the contaminated villages if possible, consumption of bottled water and application of reverse osmosis are recommended as remedial actions in the contaminated areas.

  相似文献   

14.
This study was carried out to assess the fluoride levels of groundwater from open wells, consumed by the residents of three communities located in two distinct geological terrains of southwestern Nigeria. Fluoride concentration was determined using spectrophotometric technique, while analysis of other parameters like temperature, pH and total dissolve solids followed standard methods. Results of the analysis indicated that groundwater samples from Abeokuta Metropolis (i.e., basement complex terrain) had fluoride content in the range of 0.65?±?0.21 and 1.20?±?0.14. These values were found to be lower than the fluoride contents in the groundwater samples from Ewekoro peri-urban and Lagos metropolis where the values ranged between 1.10?±?0.14-1.45?±?0.07 and 0.15?±?0.07-2.20?±?1.41?mg/l, respectively. The fluoride contents in almost all locations were generally higher than the WHO recommended 0.6?mg/l. Analysis of Duncan multiple range test indicated that there is similarity in the level of significance of fluoride contents between different locations of same geological terrain at p?≤?0.05. It was also observed that fluoride distribution of groundwater samples from the different geological terrain was more dependent on factors like pH and TDS than on temperature. The result of the analyzed social demographic characteristics of the residents indicated that the adults (between the age of 20 and >40?years) showed dental decay than the adolescent (<20?years). This signifies incidence of dental fluorosis by the high fluoride content in the drinking water of the populace. Further investigation on all sources of drinking water and other causes of tooth decay in the area is suggested.  相似文献   

15.
Fluoride is a naturally occurring toxic mineral present in drinking water and causes yellowing of teeth, tooth problems etc. Fluorspar, Cryolite and Fluorapatite are the naturally occurring minerals, from which fluoride finds its path to groundwater through infiltration. In the present study two groundwater samples, Station I and Station II at Hyderabad megacity, the capital of Andhra Pradesh were investigated for one year from January 2001 to December 2001. The average fluoride values were 1.37 mg/l at Station I and 0.91 mg/l at Station II. The permissible limit given by BIS (1983) 0.6-1.2 mg/l and WHO (1984) 1.5 mg/l for fluoride in drinking water. The groundwaters at Station I exceeded the limit while at Station II it was within the limits. The study indicated that fluoride content of 0.5 mg/l is sufficient to cause yellowing of teeth and dental problems.  相似文献   

16.
Occurrence and problems of high fluoride waters in Turkey: an overview   总被引:1,自引:0,他引:1  
Endemic dental fluorosis was first observed in Turkey in Isparta Province, located in the SW of Anatolia, with mottled enamel related to the high levels of fluoride (1.5–4.0 ppm) in drinking waters, about 55 years ago. The origin of fluoride was attributed to the contents of minerals in volcanic rocks, consisting of pyroxene, hornblende, biotite, fluorapatite and glassy groundmass minerals. It was also reported about 35 years ago that severe dental and skeletal fluorosis has been observed in human beings and livestock in Dogubeyaz?t and Caldiran areas, located around Tendurek Volcano in eastern Turkey, where natural waters contained fluoride levels between 2.5 and 12.5 ppm. It was hypothesised that fluoride, which might be transported by fumaroles or escaped from devitrified lavas, could be held on the surface of some minerals and then exchanged with OH- in ground waters with high pH at the foothills of the young Tendurek Volcano. Endemic dental and skeletal fluorosis was also observed in the inhabitants in Kizilcaoren Village of Beylikova Town in Eski?ehir Province situated in the midwest of Turkey, where the fluoride content of the drinking waters ranged from 3.9 to 4.8 ppm. The origin of high fluoride in the natural waters was related to the fluorspar deposits, occurring in the catchment area near the village. During the survey in the Güllü Village of Esme-Usak, located in south-midwest of Turkey, it was observed that most of the inhabitants born and raised in the village and aged between 10 and 30 years, showed mild to moderate levels of mottled enamel. The fluoride contents of the deep well waters used for drinking in the village, varied from 0.7 to 2.0 ppm. Amorphous microscopic fluorite existing in the Pliocene lake limestones was considered as a possible origin of fluoride in the waters.  相似文献   

17.
The west plain region of Jilin province of northeast China is one of the typical endemic fluorosis areas caused by drinking water for many years. Investigations of hydrogeological and ecoenvironmental conditions as well as endemic fluorosis were conducted in 1998. Results show that the ground water, especially, the water in the unconfined aquifer is the main source of drinking water for local residents. The fluoride concentration in groundwater in the unconfined aquifers is higher than that in the confined aquifer in the west plain of Jilin province. The fluoride concentration in the unconfined aquifer can be used to classify the plain into fluoride deficient area, optimum area and excess area, which trend from west to east. High fluoride (>1.0 mg L(-1)) in drinking water resulted in dental and skeletal fluorosis in local residents (children and pregnant women). There exists a positive correlation between fluoride concentration in the drinking water and the morbidities of endemic fluorosis disease (r1 = 0.781, r2 = 0.872). Health risks associated with fluoride concentration in drinking water are assessed. It has been determined that fluoride concentration in excess of 1.0 mg L(-1) exposes residents to high health risks based on risk identification. The study area is classified into five health risk classes as shown in Figure 4. The risk indexes of this area more than 1.0 are accounted for 68% of the total west plain region.  相似文献   

18.
The purpose of this study was to assess the fluoride content of Ceylon Tea, which is a popular beverage throughout the world. The fluoride content of tea infusions prepared from different grades of tea leaves collected from different parts of the tea-growing regions (25 samples) of Sri Lanka was measured using a fluoride-selective electrode. Fluoride leaching was found to vary from 0.32 to 1.69 mg F/l, but there were no significant differences in terms of fluoride leaching between tea from different tea-growing regions or between tea of different grades. Dental fluorosis is widespread throughout the dry zone of Sri Lanka, and drinking water has traditionally been considered to be the main contributory factor to the development of fluorosis. However, diet, the consumption of tea in particular, may also contribute to the manifestation of dental diseases.  相似文献   

19.
This study was conducted to investigate the high incidence of mottled teeth among residents of an area with hot springs in the Choma District of the Southern Province of Zambia. A survey involving 128 pupils was conducted at a Basic School to collect data on pupil’s backgrounds and their main sources of drinking water between birth and age 7. A dental specialist examined the pupils’ teeth and samples of drinking water were collected from locations where the majority of the pupils lived. It was analysed for fluorides and other drinking water quality parameters. Results of the survey showed a highly significant (P < 0.001) association between pupils’ main sources of drinking water between birth and age 7 and the incidence of discoloured teeth. All (100%) pupils who drank water from hot springs before age 7 had moderate to severe fluorosis, while the majority (96.7%) of the pupils who drank water from other sources had no dental fluorosis. Fluoride concentrations ranged from 5.95 to 10.09 mg/l in water from hot springs, and from 0.03 to 0.6 mg/l in water from other sources. Fluoride levels in water from hot spring water samples exceeded the 1.5 mg/l WHO guideline value for drinking water, while those in water from other sources were significantly (P < 0.05) lower than this. We conclude that the high prevalence of mottled teeth among residents of the study area is a case of endemic dental fluorosis associated with drinking water from hot springs containing high concentrations of fluoride.  相似文献   

20.
This study was carried out to measure the fluoride levels of water consumed in the Njoro division of Nakuru district, Kenya. The sources of drinking water, methods of water storage and utilisation, as well as the perceptions of the local community towards dental fluorosis and the percentage of children with moderate to severe dental fluorosis were also determined. Rainwater had mean fluoride levels of 0.5 mg L-1, dams 2.4 mg L-1, wells 4.1 mg L-1, springs 5.5 mg L-1, and boreholes 6.6 mg L-1. Water stored in plastic and cement containers did not show appreciable reduction in fluoride content with storage time; water stored in metal containers reduced fluoride by up to 8.2%; water stored in clay pots had the highest reduction in fluoride content, ranging between 34.3 and 64.7%;. Forty eight point three percent of children observed in the area had moderate to severe dental fluorosis, even though most people in the area did not know the cause of the problem.There is need to educate the community on the causes of fluorosis, and to lay strategies for addressing the issue, such as encouraging more rainwater harvesting, treating drinking water with alum, or using clay pots for storage of drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号