首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

2.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

3.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

4.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

5.
The White Sea gastropod Hydrobia ulvae (Pennant) was exposed to step-wise lowering or increase of the habitat salinity. The time allowed for acclimatization to the successive salinity levels was sufficient to complete non-genetic adaptation. In this way, the lower and upper salinity limits were extended. The tolerance limits obtained are assumed to be indicative of the capacity for non-genetic adaptation and to serve as a genotypical characteristic. The tolerance of specimens colleced from in situ conditions (mid littoral, 20 S) ranged between 14 and 34 S. After non-genetic adaptation, the lower tolerance value shifted to 6 S (adaptation limit), and the upper value to 76 S (final limit not reached). There is no reason for considering White Sea H. ulvae to represent a special physiological race of specimens from those on the coast of Great Britain.  相似文献   

6.
Copper is an active ingredient in many antifouling products, and pleasure boats are estimated to be the major single source of copper pollution in Swedish coastal waters. For this reason, the effects of copper were studied on egg volume, fertilization, germination and development of apical hairs of Baltic Sea Fucus vesiculosus L. Germination was the most sensitive stage and was studied at different concentrations of copper, different salinities and different ages of zygotes. Low concentrations of copper, 2.5 g Cu l-1, added to natural brackish water before fertilization, adversely affected germination at the ambient, suboptimal salinity of 6, suggesting that as little as a doubling of the copper levels in the studied area will severely affect the germination frequency of F. vesiculosus. The addition of 20 g Cu l-1 caused about 70 to 80% decline in germination at 6S but also at 20S which is higher than optimum. At a salinity close to optimum (14S) no negative effect was noticed on germination when 20 g Cu l-1 was added. The results suggest that the degree of salinity stress acting upon the zygotes is a more important factor for the response to copper than the influence of salinity on metal availability. When 2.5 to 60 g Cu l-1 was added to the medium 24 h after fertilization, the zygotes were more resistant, resembling the response of adult marine fucoid tissue.  相似文献   

7.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

8.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

9.
The seasonal variations in distribution and abundance of the common zooplankton species in the Bristol Channel and Severn Estuary were related to the salinity regimes observed over the period November 1973 to February 1975. The dominant constituents in all regions were the calanoid copepods, which reached maximum densities in July: approximately 100 times their winter levels. Four zooplankton assemblages were recognised using an objective classification program which computed similarity coefficients and used group-average sorting. The assemblages existed along the salinity gradient observed from the Severn Estuary to the Celtic Sea. The assemblages were classified as true estuarine, estuarine and marine, euryhaline marine and stenohaline marine and were characterized by the copepods Eurytemora affinis (Poppe) (<30S), Acartia bifilosa var. inermis (rose) (27 to 33.5S), Centropages hamatus (Lilljeborg) (31 to 35S) and Calanus helgolandicus (Claus) (>33S), respectively.  相似文献   

10.
Stable carbon isotope measurements (13C) were used to assess the importance of kelp carbon (-13.6 to-16.5) versus phytoplankton carbon (-25.5 to-26.5) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in 13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2), a nonselective suspension feeder (an ascidian,-19.0) and a predatory gastropod (-17.6). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, 13C values identified four major feeding habits: deposit-feeders (-18.0), omnivores (-20.4), predators (-22.2) and microalgal herbivores (-23.0). Distinct seasonal changes in the 13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.  相似文献   

11.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

12.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

13.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

14.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

15.
Routine oxygen uptake (QO2) by yolk-sac and firstfeeding larvae of herring (Clupea harengus L.) and plaice (Pleuronectes platessa L.) was studied after acute change of temperature (8°, 13°, 18°C) and salinity (5, 12.7, 32, 40). In both species, QO2 (l mg-1 dry wt h-1) of both larval stages increased with increasing temperature. Salinity effect on QO2 varied: for yolk-sac larvae of both species a lower QO2 was found at lower combined salinities (5 and 12.7); for feeding larvae a lower QO2 was observed at 12.7 for both species, possibly due to the relatively smaller size of larvae used at this salinity. For both species, oxygen uptake increased as larvae grew and weight regression coefficients were between 0.74 and 1.33. At 32 S, no difference was found in oxygen consumption between species as a function of temperature.Based on a dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science at the University of Stirling, Stirling, Scotland. The work was performed at the Dunstaffnage Marine Research Laboratory, Oban, Scotland  相似文献   

16.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

17.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

18.
Crassostrea virginica Gmelin were subjected to simulated tidal fluctuations of salinity, and the subsequent effects on osmotic and ionic composition of the pericardial fluid, body water and valve movements were investigated. Ambient salinity fluctuation patterns of 20-10-20, 15-10-15 and 10-5-10 were simulated during 24.8-h periods. An additional 10-5-10 S experiment was performed using a dilution water approximating the ionic composition of Mississippi River water with regard to Mg++, Ca++ and SO 4 = , instead of deionized water. Finally the effects of a 2-week diurnal fluctuation pattern between 20 and 10 S were investigated with respect to pericardial fluid composition. Pericardial fluid osmolality, concentrations of Cl-, Na+, Mg++, K+, Ca++ and ninhydrin-positive substances (NPS) were analyzed periodically throughout all experiments. Pericardial fluid osmolality was slightly hyperosmotic as ambient water salinity decreased during a cycle, and then became slightly hyposmotic as ambient salinity increased. In the 2-week experiment, pericardial fluid osmolality tracked ambient seawater closely through Day 5, but became more intermediate between high and low seawater values as the experiment progressed. Similar patterns during fluctuations of salinity were observed for Na+, Cl-, Mg++ and Ca++. Pericardial fluid K+ levels did not track ambient seawater as closely as did other ions. The ionic composition of dilution water had little effect on the osmotic or ionic response of the oyster's pericardial fluid. Pericardial fluid NPS level varied inversely with salinity during the 20-10-20 cycle. During the longterm fluctuation experiment, NPS values gradually decreased over the 2-week period compared to constant salinity control values. Percent body water also varied inversely with ambient salinity. Solute movement accounted for most of the change in pericardial fluid osmolality during the simulated cycles with water movement responsible for 1 to 11%. Water movement contributed more to the change of pericardial fluid osmolality during the decreasing salinity phase than the increasing phase of a given cycle. During 20-10-20 S cycles, oyster valves remained open 56% of the time (n=23). In contrast, when salinity was abruptly changed from 20 to 10 within 5 min, valve closure occurred in 4.8±0.3 min (n=20). Valves did not reopen for 19.3±1.2 h (n=15).  相似文献   

19.
Combined effects of lead, salinity and temperature on the embryonic development of the mussel Mytilus galloprovincialis Lmk. were studied under laboratory conditions. The basic experimental design was a 4x6 factorial experiment using 4 lead concentrations (100, 250, 500 and 1000 ppb Pb2+) and 6 salinity levels (from 25 to 37.5 with 2.5 intervals). These factorial designs were carried out at three constant temperatures (150, 17.50 and 20°C). The statistical analysis indicated that salinity changes have more effect on the embryonic development than temperature. Optimal development was observed at 34.8 and 15.6°C, which is in accordance with observations in the field. The effect of lead was mininal in optimal salinity and temperature conditions. The deleterious effect of lead on the embryonic development was especially conspicuous at 20°C. Since in nature spawning occurs at temperatures inferior to 20°C, lead will probably not drastically decrease the potential recruitment of mussel spat in the littoral populations of the northern Adriatic Sea, where the salinity of the water is relatively stable. Under experimental conditions, lead caused a delay or inhibition of the embryonic development with the occurrence of a large number of abnormal larvae.  相似文献   

20.
Prawns (Penaeus monodon) were obtained from ponds in Iloilo, Philippines, in 1984 and 1985 and maintained in salinities from 8 to 44. Total hemolymph calcium was largely affected by molt stage and less so by salinity. A sharp, transient increase in hemolymph calcium occurred 3 to 6 h postmolt, followed by an equally rapid decrease from 6 h postmolt to intermolt. This biphasis response was limited to prawns in 8, 20 and 32S; in 44S, hemolymph calcium remained the same throughout the sampling period. Peak concentrations of total calcium were greater in low (8 and 20S) than in high salinities. Salinity had no effect on the duration of molt cycle nor on time of occurrence of molt. Almost half of molting incidents occurred between 18.01 and 0.00 hrs, and one-third between 0.01 and 06.00 hrs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号