首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the potential expansion of forest conservation programs spurred by climate-change agreements, there is a need to measure the extent to which such programs achieve their intended results. Conventional methods for evaluating conservation impact tend to be biased because they do not compare like areas or account for spatial relations. We assessed the effect of a conservation initiative that combined designation of protected areas with payments for environmental services to conserve over wintering habitat for the monarch butterfly (Danaus plexippus) in Mexico. To do so, we used a spatial-matching estimator that matches covariates among polygons and their neighbors. We measured avoided forest loss (avoided disturbance and deforestation) by comparing forest cover on protected and unprotected lands that were similar in terms of accessibility, governance, and forest type. Whereas conventional estimates of avoided forest loss suggest that conservation initiatives did not protect forest cover, we found evidence that the conservation measures are preserving forest cover. We found that the conservation measures protected between 200 ha and 710 ha (3-16%) of forest that is high-quality habitat for monarch butterflies, but had a smaller effect on total forest cover, preserving between 0 ha and 200 ha (0-2.5%) of forest with canopy cover >70%. We suggest that future estimates of avoided forest loss be analyzed spatially to account for how forest loss occurs across the landscape. Given the forthcoming demand from donors and carbon financiers for estimates of avoided forest loss, we anticipate our methods and results will contribute to future studies that estimate the outcome of conservation efforts.  相似文献   

2.
There is profound interest in knowing the degree to which China's institutions are capable of protecting its natural forests and biodiversity in the face of economic and political change. China's 2 most important forest‐protection policies are its National Forest Protection Program (NFPP) and its national‐level nature reserves (NNRs). The NFPP was implemented in 2000 in response to deforestation‐caused flooding. We undertook the first national, quantitative assessment of the NFPP and NNRs to examine whether the NFPP achieved its deforestation‐reduction target and whether the NNRs deter deforestation altogether. We used MODIS data to estimate forest cover and loss across mainland China (2000–2010). We also assembled the first‐ever polygon dataset for China's forested NNRs (n = 237, 74,030 km2 in 2000) and used both conventional and covariate‐matching approaches to compare deforestation rates inside and outside NNRs (2000–2010). In 2000, 1.765 million km2 or 18.7% of mainland China was forested (12.3% with canopy cover of ≥70%)) or woodland (6.4% with canopy cover <70% and tree plus shrub cover ≥40%). By 2010, 480,203 km2 of forest and woodland had been lost, an annual deforestation rate of 2.7%. Forest‐only loss was 127,473 km2 (1.05% annually). In the NFPP provinces, the forest‐only loss rate was 0.62%, which was 3.3 times lower than in the non‐NFPP provinces. Moreover, the Landsat data suggest that these loss rates are overestimates due to large MODIS pixel size. Thus, China appears to have achieved, and even exceeded, its target of reducing deforestation to 1.1% annually in the NFPP provinces. About two‐thirds of China's NNRs were effective in protecting forest cover (prevented loss 4073 km2 unmatched approach; 3148 km2 matched approach), and within‐NNR deforestation rates were higher in provinces with higher overall deforestation. Our results indicate that China's existing institutions can protect domestic forest cover.  相似文献   

3.
Abstract:  Amphibian populations have been declining worldwide and the exact mechanisms underlying these changes are not well understood. We examined environmentally induced phenotypic changes that may reflect ongoing stresses on individuals and therefore their ability to persist in increasingly changing landscapes. Specifically, we evaluated the contribution of habitat loss on the size, allometry, and levels of fluctuating asymmetry of Eleutherodactylus antillensis and E. coqui , 2 common species that are endemic to Puerto Rico. We x-rayed frogs collected at 9 sites that differed in the amount of forest cover and measured their snout-vent, radio-ulna, femur, and tibio-fibula lengths. E. antillensis and E. coqui were smaller in the highly disturbed (≤20% forest cover) than in the intermediately (20–70% forest cover) and little-disturbed (≥70% forest cover) landscapes. In E. antillensis but not in E. coqui , the slope and intercept of the curves relating snout-vent length with the length of the 3 bones differed with degree of forest cover, suggesting an effect of habitat loss on body shape. In E. antillensis and E. coqui , differences between right and left sides corresponded to true fluctuating asymmetry; however, only the radio-ulna length of E. coqui showed a trend toward an increase in fluctuating asymmetry with habitat loss. Because body size scales with a variety of physiological, life history, and ecological traits, conservation programs aimed at monitoring morphological changes in amphibians may help in understanding the mechanisms that contribute to their persistence in changing environments.  相似文献   

4.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

5.
Abstract:  Deforestation in Indonesia poses a significant threat to the region's biodiversity. We mapped forest cover in Kalimantan, Indonesia, in 2002, with imagery provided by the Moderate Resolution Imaging Spectrometer (MODIS). The MODIS-based forest and nonforest map showed good agreement with other sources of recent data on forest cover. Comparison of MODIS forest cover with Indonesian government data from 1996 revealed that almost 3 million ha of forest were lost in Kalimantan since the major El Niño event of 1997–1998, when a drought produced unprecedented biomass burning in the region. Over two-thirds of the deforestation occurred in proposed and existing protected areas, especially those of 100,000–250,000 ha. The loss of forest in proposed and existing protected areas suggests that Kalimantan's protected-area network is no longer viable and that alternative conservation strategies, such as timber certification and improved monitoring and enforcement, are needed to preserve remaining forest habitats there.  相似文献   

6.
ABSTRACT

Forest cover dynamics (1993-2018) was assessed in two regions on the Yucatan Peninsula: Zona Maya (ZM), 67% indigenous with shifting cultivation and community forestry; and Bacalar–Rio Hondo (BRH), mainly commercial agriculture and pastureland. Degradation (12,915 ha y?1) exceeded deforestation (5882 ha y?1) and was worse in BRH. In BRH there was a net forest loss (?1.6% y?1) associated with pastureland and commercial agriculture. In ZM, mature forest recovery (1.4% y?1) and dynamic forest cover (continuous loss and gain) were associated with shifting cultivation. Changes were more intense during 2011–2018 and gains of mature forest in ZM and deforested areas in BRH targeted secondary vegetation. Fragments of mature and secondary vegetation decreased, and connectivity improved in ZM, but opposite trends occurred in BRH. Reporting and monitoring deforestation using Global Forest Watch data is inadequate since 62% of forest cover loss represent degrading or recovering forest cover.  相似文献   

7.
Long-term studies to understand biodiversity changes remain scarce—especially so for tropical mountains. We examined changes from 1911 to 2016 in the bird community of the cloud forest of San Antonio, a mountain ridge in the Colombian Andes. We evaluated the effects of past land-use change and assessed species vulnerability to climate disruption. Forest cover decreased from 95% to 50% by 1959, and 33 forest species were extirpated. From 1959 to 1990, forest cover remained stable, and an additional 15 species were lost—a total of 29% of the forest bird community. Thereafter, forest cover increased by 26% and 17 species recolonized the area. The main cause of extirpations was the loss of connections to adjacent forests. Of the 31 (19%) extirpated birds, 25 have ranges peripheral to San Antonio, mostly in the lowlands. Most still occurred regionally, but broken forest connections limited their recolonization. Other causes of extirpation were hunting, wildlife trade, and water diversion. Bird community changes included a shift from predominantly common species to rare species; forest generalists replaced forest specialists that require old growth, and functional groups, such as large-body frugivores and nectarivores, declined disproportionally. All water-dependent birds were extirpated. Of the remaining 122 forest species, 19 are vulnerable to climate disruption, 10 have declined in abundance, and 4 are threatened. Our results show unequivocal species losses and changes in community structure and abundance at the local scale. We found species were extirpated after habitat loss and fragmentation, but forest recovery stopped extirpations and helped species repopulate. Land-use changes increased species vulnerability to climate change, and we suggest reversing landscape transformation may restore biodiversity and improve resistance to future threats.  相似文献   

8.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

9.
森林采伐对地表藓类种群的发育具有重要影响,但很少有人评估这种影响后迹地上的藓类种群状况.本研究调查了四川壤塘县4个系列采伐迹地和附近原始云杉林下3种林地优势藓类种群[锦丝藓(Actinothuidium hookeri)、塔藓(Hylocomium splendens)和大羽藓(Thuidium cymbifolium)]的发生频率和盖度、生物量以及维管束植物盖度和凋落物盖度,通过方差分析检验比较分析了3个藓类种群的盖度和生物量在不同采伐迹地及原始林之间的差异,评估了其自然发展趋势,揭示了维管束植物结构参数与藓类种群盖度和生物量之间的相互关系.发现:1)3种藓类种群的盖度和生物量在采伐迹地和附近原始林间有显著差异,但在系列采伐迹地之间没有明显差异,证实森林采伐后林生地表藓类种群显著衰退,随着迹地自然恢复进程这些藓类种群并未能逐渐恢复;2)微环境尺度上的藓类盖度和生物量在系列采伐迹地之间有较大的波动,Spearman相关分析显示乔木和草本层盖度是影响藓类种群生物量的主要因子.综合分析表明,采伐导致的环境变化以及藓类自身的牛态适应性和繁殖策略综合决定着藓类种群的自然恢复能力;如果仅仅依靠迹地自然恢复过程,顶极藓类种群(塔藓和锦丝藓)是难以自然复壮的.图6表4参44  相似文献   

10.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

11.
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800‐ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species‐richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30–50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30–50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30–50%). Highly sensitive species were 3‐4 times more common above the 30–50% threshold than below it; however, our results do not support a unique fragmentation threshold. Asociaciones de la Cobertura Forestal, Superficie del Fragmento y Conectividad con la Riqueza y Abundancia de Aves Neotropicales de Sotobosque  相似文献   

12.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

13.
Abstract: Slash-and-burn shifting cultivation, or jhum , the predominant form of agriculture in the hill tracts of northeast India, is believed to have caused considerable loss of forest cover in the species-rich tropical rainforests of the region. In this study I sought to understand how rainforest bird communities are affected by shifting cultivation in Mizoram State. I studied bird occurrence and abundance patterns in secondary successional and mature tropical rainforests in a shifting-cultivation habitat mosaic in Dampa Tiger Reserve. To compare replicate sites in fallows aged 1, 5, 10, 25, and 100 years with undisturbed primary forest, I used systematic strip-transect sampling over the winter and early summer ( breeding) seasons during 1994–1995. Many forest bird species, especially those with ranges restricted to northeast India, declined in abundance or disappeared in successional fallows that had regenerated for ≤10 years. Birds that colonized or increased in abundance in regrowth habitats were mainly common and widespread species of open-country and secondary-forest habitats, and of low importance for conservation. Primary forest was the main habitat for specialized forest birds, intrinsically rare species, and elevational migrants. Although protection and conservation of relatively undisturbed mature forests is imperative in the core area of the reserve, management in the buffer zone for long-rotation shifting cultivation (>10-year cycles) instead of plantation of monocultures may be important until alternate means of livelihood are available to cultivators.  相似文献   

14.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

15.
We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.  相似文献   

16.
There is a growing need to assess and monitor forest cover and its conservation status over global scales to determine human impact on ecosystems and to develop sustainability plans. Recent approaches to measure regional and global forest status and dynamics are based on remotely sensed estimates of tree cover. We argue that tree cover should not be used to assess the area of forest ecosystems because tree cover is an undefined subset of forest cover. For example, tree cover can indicate a positive trend even in the presence of deforestation, as in the case of plantations. We believe a global map of forest naturalness that accounts for the bio-ecological integrity of forest ecosystems, for example, intact forests, old-growth forest patches, rewilding forests (exploited forest landscapes undergoing long-term natural succession), and managed forests is needed for global forest assessment.  相似文献   

17.
Modern agricultural practices have been strongly linked with increased NO3-N loadings in surface waters. Nitrate leaching increases as land use progresses from forest and moorland through grassland, to arable agriculture. There are, within the UK, few studies on a regional scale capable of displaying a relationship between land cover (agricultural intensity) and water quality. This relationship can be investigated using computer manipulation of spatial geographic information together with conventional river and agricultural census data.

Simple regression analysis against primary land cover suggests that agriculture is reponsible for annual losses of nitrate in North East Scotland river catchments. Further multi-linear regression analysis, using the GIS data and agricultural census returns indicate that most of the outstanding variation can be accounted for if the agricultural variable is related to agricultural practice, such as spring, winter and grass cropping.  相似文献   

18.
Tropical forest destruction and fragmentation of habitat patches may reduce population persistence at the landscape level. Given the complex nature of simultaneously evaluating the effects of these factors on biotic populations, statistical presence/absence modelling has become an important tool in conservation biology. This study uses logistic regression to evaluate the independent effects of tropical forest cover and fragmentation on bird occurrence in eastern Guatemala. Logistic regression models were constructed for 10 species with varying response to habitat alteration. Predictive variables quantified forest cover, fragmentation and their interaction at three different radii (200, 500 and 1000 m scales) of 112 points where presence of target species was determined. Most species elicited a response to the 1000 m scale, which was greater than most species’ reported territory size. Thus, their presence at the landscape scale is probably regulated by extra-territorial phenomena, such as dispersal. Although proportion of forest cover was the most important predictor of species’ presence, there was strong evidence of area-independent and -dependent fragmentation effects on species presence, results that contrast with other studies from northernmost latitudes. Species’ habitat breadth was positively correlated with AIC model values, indicating a better fit for species more restricted to tropical forest. Species with a narrower habitat breadth also elicited stronger negative responses to forest loss. Habitat breadth is thus a simple measure that can be directly related to species’ vulnerability to landscape modification. Model predictive accuracy was acceptable for 4 of 10 species, which were in turn those with narrower habitat breadths.  相似文献   

19.
We describe a simulation model representing the most important human and natural factors driving land use and cover changes (LUCC) in southern Chile. We evaluate the model by examining its ability to simulate LUCC observed over the past three decades, conduct a sensitivity analysis of simulated trends to changes in important model parameters, and use the model to project likely landscape transformations over the next decade under “as usual,” “pessimistic,” and four “optimistic” scenarios. The model consists of five submodels representing LUCC on two distinct soil formations (volcanic ash and gleysols) and four major land use categories: native forest, agricultural land, shrubland, and urban land. Land use and cover sub-categories include old growth forests, secondary forests, and low and flooded shrubland. The model simulated well general historic trends in forest cover, agricultural land, shrubland, and urban land: from a forest-dominated landscape in 1976 to a landscape dominated by shrubland and agricultural land by 2007. Forest loss, forest degradation by logging and clearing for agriculture were the most important direct drivers of LUCC: forest logging and clearing were most important from 1976 to 1985, whereas after 1985 logging for firewood, driven by population growth, was most important. Sensitivity analysis indicated that model projections of general trends in the main land use and cover categories were not overly sensitive to changes in important model parameters, although further study is necessary to improve our estimates of the proportion of pasture requirements supplied by clearing low shrubland. Projections of LUCC suggested that a reduced amount of secondary forest would be left by 2017 if no actions are taken to reduce forest loss (“as usual”). Increasing population (“pessimistic scenario”) resulted in similar trajectories than those predicted by the as usual scenario, whereas reducing logging for firewood and increasing forest recruitment from shrubland could reduce loss of native forest by nearly one-third (“optimistic scenarios”). Surprisingly, shrubland exhibited the most complex and influential dynamics in all scenarios, being the immediate outcome of forest loss and the main long-term source of land for agriculture, urban expansion, and forest recovery. Few studies in Chile, or elsewhere, have considered the importance of this intermediate successional stage. Of the scenarios simulated, financial incentives targeted toward channeling shrubland into regenerated forest seemed most promising, although obstacles to such a management strategy exist.  相似文献   

20.
Effect of Human Disturbance on Bee Communities in a Forested Ecosystem   总被引:11,自引:0,他引:11  
Abstract:  It is important for conservation biologists to understand how well species persist in human-dominated ecosystems because protected areas constitute a small fraction of the Earth's surface and because anthropogenic habitats may offer more opportunities for conservation than has been previously thought. We investigated how an important functional group, pollinators (bees; Hymenoptera: Apiformes), are affected by human land use at the landscape and local scales in southern New Jersey (U.S.A.). We established 40 sites that differed in surrounding landscape cover or local habitat type and collected 2551 bees of 130 species. The natural habitat in this ecosystem is a forested, ericaceous heath. Bee abundance and species richness within forest habitat decreased, not increased, with increasing forest cover in the surrounding landscape. Similarly, bee abundance was greater in agricultural fields and suburban and urban developments than in extensive forests, and the same trend was found for species richness. Particular species groups that might be expected to show greater sensitivity to habitat loss, such as floral specialists and bees of small or large body size, did not show strong positive associations with forest habitat. Nevertheless, 18 of the 130 bee species studied were positively associated with extensive forest. One of these species is a narrow endemic that was last seen in 1939. Our results suggest that at least in this system, moderate anthropogenic land use may be compatible with the conservation of many, but not all, bee species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号