首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yaari G  Ben-Zion Y  Shnerb NM  Vasseur DA 《Ecology》2012,93(5):1214-1227
Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.  相似文献   

2.
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   

3.
Past studies of local extinctions in fragmented habitats most often tested the influence of fragment size and isolation while ignoring how differences in the surrounding landscape matrix may govern extinction. We assessed how both the spatial attributes of remnant patches (area and isolation) and landscape factors (extent of urbanization and maximum inter-fire interval) influence the persistence of native plant species in grasslands in western Victoria, Australia. Persistence was determined in 2001 by resurveying 30 remnants first surveyed in the 1980s, and correlates of extinction were assessed using Bayesian logistic regression models. On average, 26% of populations of native species became locally extinct over two decades. Area and isolation had little effect on the probability of local extinction, but urbanization and longer maximum inter-fire intervals increased extinction risk. These findings suggest that the native grasslands studied are relatively insensitive to area- and isolation-based fragmentation effects and that short-term persistence of plant populations requires the maintenance of habitat quality. The latter is strongly influenced by the landscape matrix surrounding remnant patches through changes in fire regimes and increased exogenous disturbance.  相似文献   

4.
Extinction and metapopulation theories emphasize that stochastic fluctuations in local populations cause extinction and that local extinctions generate empty habitat patches that are then available for recolonization. Metapopulation persistence depends on the balance of extinction and colonization in a static environment. For many rare and declining species, I argue (1) that extinction is usually the deterministic consequence of the local environment becoming unsuitable (through habitat loss or modification, introduction of a predator, etc.); (2) that the local environment usually remains unsuitable following local extinction, so extinctions only rarely generate empty patches of suitable habitat; and (3) that colonization usually follows improvement of the local environment for a particular species (or long-distance transfer by humans). Thus, persistence depends predominantly on whether organisms are able to track the shifting spatial mosaic of suitable environmental conditions or on maintainance of good conditions locally.  相似文献   

5.
Many services generated by forest ecosystems provide essential support for human well-being. However, the vulnerability of these services to environmental change such as forest fragmentation are still poorly understood. We present spatial modeling of the generation of ecosystem services in a human-dominated landscape where forest habitat patches, protected by local taboos, are located in a matrix of cultivated land in southern Madagascar. Two ecosystem services dependent on the forest habitats were addressed: (1) crop pollination services by wild and semidomesticated bees (Apoidea), essential for local crop production of, for example, beans, and (2) seed dispersal services based on the presence of ring-tailed lemurs (Lemur catta). We studied the vulnerability of these ecosystem services to a plausible scenario of successive destruction of the smallest habitat patches. Our results indicate that, in spite of the fragmented nature of the landscape, the fraction of the landscape presently covered by both crop pollination and seed dispersal services is surprisingly high. It seems that the taboo system, though indirectly and unintentionally, contributes to upholding the generation of these services by protecting the forest patches. Both services are, however, predicted to be very vulnerable to the successive removal of small patches. For crop pollination, the rate of decrease in cover was significant even when only the smallest habitat patches were removed. The capacity for seed dispersal across the landscape displayed several thresholds with habitat patch removal. Our results suggest that, in order to maintain capacity for seed dispersal across the landscape and crop pollination cover in southern Androy, the geographical location of the remaining forest patches is more crucial than their size. We argue that in heavily fragmented production landscapes, small forest patches should increasingly be viewed as essential for maintaining ecosystem services, such as agricultural production, and also should be considered in the ongoing process of tripling the area of protected habitats in Madagascar.  相似文献   

6.
Abstract:  Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo ( Scelorchilus rubecula ), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.  相似文献   

7.
Quantifying dispersal is crucial both for understanding ecological population dynamics, and for gaining insight into factors that affect the genetic structure of populations. The role of dispersal becomes pronounced in highly fragmented landscapes inhabited by spatially structured populations. We consider a landscape consisting of a set of habitat patches surrounded by unsuitable matrix, and model dispersal by assuming that the individuals follow a random walk with parameters that may be specific to the habitat type. We allow for spatial variation in patch quality, and account for edge-mediated behavior, the latter meaning that the individuals bias their movement towards the patches when close to an edge between a patch and the matrix. We employ a diffusion approximation of the random walk model to derive analytical expressions for various characteristics of the dispersal process. For example, we derive formulae for the time that an individual is expected to spend in its current patch i, and for the time that it will spend in the matrix, both conditional on the individual hitting next a given patch j before hitting any of the other patches or dying. The analytical formulae are based on the assumptions that the landscape is infinitely large, that the patches are circularly shaped, and that the patches are small compared to interpatch distances. We evaluate the effect of these assumptions by comparing the analytical results to numerical results in a real patch network that violates all of the three assumptions. We then consider a landscape that fulfills the assumptions, and show that in this case the analytical results are in a very good agreement with the numerical results. The results obtained here allow the construction of computationally efficient dispersal models that can be used as components of metapopulation models.  相似文献   

8.
Templeton AR  Brazeal H  Neuwald JL 《Ecology》2011,92(9):1736-1747
Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.  相似文献   

9.
Using network centrality measures to manage landscape connectivity   总被引:2,自引:0,他引:2  
We use a graph-theoretical landscape modeling approach to investigate how to identify central patches in the landscape as well as how these central patches influence (1) organism movement within the local neighborhood and (2) the dispersal of organisms beyond the local neighborhood. Organism movements were theoretically estimated based on the spatial configuration of the habitat patches in the studied landscape. We find that centrality depends on the way the graph-theoretical model of habitat patches is constructed, although even the simplest network representation, not taking strength and directionality of potential organisms flows into account, still provides a coarse-grained assessment of the most important patches according to their contribution to landscape connectivity. Moreover, we identify (at least) two general classes of centrality. One accounts for the local flow of organisms in the neighborhood of a patch, and the other accounts for the ability to maintain connectivity beyond the scale of the local neighborhood. Finally, we study how habitat patches with high scores on different network centrality measures are distributed in a fragmented agricultural landscape in Madagascar. Results show that patches with high degree and betweenness centrality are widely spread, while patches with high subgraph and closeness centrality are clumped together in dense clusters. This finding may enable multispecies analyses of single-species network models.  相似文献   

10.
Cronin JT 《Ecology》2007,88(12):2966-2976
Field experiments that examine the impact of immigration, emigration, or landscape structure (e.g., the composition of the matrix) on the source sink dynamics of fragmented populations are scarce. Here, planthoppers (Prokelisia crocea) and egg parasitoids (Anagrus columbi) were released among host-plant patches that varied in structural (caged, isolated, or in a network of other patches) and functional (mudflat matrix that impedes dispersal vs. brome-grass matrix that facilitates dispersal) connectivity. Planthoppers and parasitoids on caged patches exhibited density-dependent growth rates, achieved high equilibrium densities, and rarely went extinct. Therefore, experimental cordgrass patches were classified as population sources. Because access to immigrants did not result in elevated population densities, source populations were not also pseudosinks, i.e., patches whose densities occur above carrying capacity due to high immigration. Planthoppers and parasitoids in open patches in mudflat had dynamics similar to those in caged patches, but went extinct in 4-5 generations in open patches in brome. Brome-embedded patches leaked emigrants at a rate that exceeded the gains from reproduction and immigration; populations of this sort are known as population sieves. For species whose suitable patches are becoming smaller and more isolated as a result of increased habitat fragmentation, emigration losses are likely to become paramount, a condition favoring the formation of population sieves. An increase in the proportion of patches that are sieves is predicted to destabilize regional population dynamics.  相似文献   

11.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   

12.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

13.
This paper presents a metapopulation study of the bush cricket, Metrioptera bicolor , living in a recently fragmented landscape. The species inhabits grass and heathland patches of varying area and isolation. Analyses are made of how these geometrical factors affect local population size and density, distribution pattern, and the probability of local extinction and colonization. The proportion of available patches occupied varied between 72 and 79% during 1985–1990. Unoccupied patches were smaller and more isolated than those that were occupied. Patches where populations became extinct during this period were smaller than those with persisting populations. Since local population size was well correlated with patch area, it was clear that stochastic extinctions only occurred in small populations. Critical patch size for population extinction was approximately half a hectare. Colonized patches were less isolated than those that had not been colonized. Critical inter-patch distance for colonization was about 100 meters. The turnover was restricted to an identifiable share of the available patches. Only 33% of the patches were so small that extinction due to stochastic causes could be considered highly probable. This metapopulation will therefore most likely persist over a considerable period in its present spatial structure. There are apparent threats of further fragmentation, however, and nothing is known about the likelihood of large-scale extinctions resulting from extremely unfavorable weather conditions. Nevertheless, our results show that it is appropriate to include geometrical factors in metapopulation models.  相似文献   

14.
Understanding the processes leading to population declines in fragmented landscapes is essential for successful conservation management. However, isolating the influence of disparate processes, and dispersal in particular, is challenging. The Grey Shrike-thrush, Colluricincla harmonica, is a sedentary woodland-dependent songbird, with learned vocalizations whose incidence in suitable habitat patches falls disproportionally with decline in tree cover in the landscape. Although it has been suggested that gaps in tree cover might act as barriers to its dispersal, the species remains in many remnants of native vegetation in agricultural landscapes, suggesting that it may have responded to habitat removal and fragmentation by maintaining or even increasing dispersal distances. We quantified population connectivity of the Grey Shrike-thrush in a system fragmented over more than 120 years using genetic (microsatellites) and acoustic (song types) data. First, we tested for population genetic and acoustic structure at regional and local scales in search of barriers to dispersal or gene flow and signals of local spatial structuring indicative of restricted dispersal or localized acoustic similarity. Then we tested for effects of habitat loss and fragmentation on genetic and acoustic connectivity by fitting alternative models of mobility (isolation-by-distance [the null model] and reduced and increased movement models) across treeless vs. treed areas. Birds within -5 km of each other had more similar genotypes and song types than those farther away, suggesting that dispersal and song matching are limited in the region. Despite restricted dispersal detected for females (but not males), populations appeared to be connected by gene flow and displayed some cultural (acoustic) connectivity across the region. Fragmentation did not appear to impact greatly the dispersal of the Grey Shrike-thrush: none of the mobility models fit the genetic distances of males, whereas for females, an isolation-by-distance model could not be rejected in favor of the models of reduced or increased movement through treeless gaps. However, dissimilarities of the song types were more consistent with the model of reduced cultural connectivity through treeless areas, suggesting that fragmentation impedes song type sharing in the Grey Shrike-thrush. Our paper demonstrates that habitat fragmentation hinders important population processes in an Australian woodland bird even though its dispersal is not detectably impacted.  相似文献   

15.
Dispersal in Spatially Explicit Population Models   总被引:4,自引:0,他引:4  
Abstract: Ruckelshaus et al. (1997) outlined a simulation model of dispersal between patches in a fragmented landscape. They showed that dispersal success—the proportion of dispersers successfully locating a patch—was particularly sensitive to errors in dispersal mortality and concluded that this limits the utility of spatially explicit population models in conservation biology. I contend that, although they explored error propagation in a simple dispersal model, they did not explore how errors are propagated in spatially explicit population models, as no consideration of population processes was included. I developed a simple simulation model to investigate the effect of varying dispersal success on predictions of patch occupancy and population viability, the conventional outputs of spatially explicit population models. The model simulates births and deaths within habitat patches and dispersal as the transfer of individuals between them. Model predictions were sensitive to changes in dispersal success across a restricted range of within-patch growth rates, which depended on the dispersal initiation mechanism, patch carrying capacities, and number of generations simulated. Predictions of persistence and patch occupancy were generally more sensitive to changes in dispersal success (1) under presaturation rather than saturation dispersal; (2) at lower patch carrying capacities; and (3) over longer time periods. The framework I present provides a means of assessing, quantitatively, the regions of parameter space for which differences in dispersal success are likely to have a large effect on population model outputs. Investigating the effect of the representation of dispersal behavior within the demographic and landscape context provides a more useful assessment of whether our lack of knowledge is likely to cause unacceptable uncertainty in the predictions of spatially explicit population models.  相似文献   

16.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

17.
The degree to which spatial patterns influence the dynamics and distribution of populations is a central question in ecology. This question is even more pressing in the context of rapid habitat loss and fragmentation, which threaten global biodiversity. However, the relative influence of habitat loss and landscape fragmentation, the spatial patterning of remaining habitat, remains unclear. If landscape pattern affects population size, managers may be able to design landscapes that mitigate habitat loss. We present the results of a mensurative experiment designed to test four habitat loss vs. fragmentation hypotheses. Unlike previous studies, we measured landscape structure using quantitative, spatially explicit habitat distribution models previously developed for two species: Blackburnian Warbler (Dendroica fusca) and Ovenbird (Seiurus aurocapilla). We used a stratified sampling design that reduced the confounding of habitat amount and fragmentation variables. Occurrence and reoccurrence of both species were strongly influenced by characteristics at scales greater than the individual territory, indicating little support for the random-sample hypothesis. However, the type and spatial extent of landscape influence differed. Both occurrence and reoccurrence of Blackburnian Warblers were influenced by the amount of poor-quality matrix at 300- and 2000-m spatial extents. The occurrence and reoccurrence of Ovenbirds depended on a landscape pattern variable, patch size, but only in cases when patches were isolated. These results support the hypothesis that landscape pattern is important for some species only when the amount of suitable habitat is low. Although theoretical models have predicted such an interaction between landscape fragmentation and composition, to our knowledge this is the first study to report empirical evidence of such nonlinear fragmentation effects. Defining landscapes quantitatively from an organism-based perspective may increase power to detect fragmentation effects, particularly in forest mosaics where boundaries between patches and matrix are ambiguous. Our results indicate that manipulating landscape pattern may reduce negative impacts of habitat loss for Ovenbird, but not Blackburnian Warbler. We emphasize that most variance in the occurrence of both species was explained by local scale or landscape composition variables rather than variables reflecting landscape pattern.  相似文献   

18.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   

19.
Laiolo P  Tella JL 《Ecology》2006,87(5):1203-1214
Landscape structure may affect individual dispersal abilities, thus influencing the genotypic and phenotypic composition of populations. We analyzed the interplay among landscape, behavior, and evolutionary processes by correlating habitat patchiness to the variability in vocalizations of Dupont's Lark Chersophilus duponti, one of the most habitat-selective and rare European songbirds. We tape-recorded males throughout the species distribution in Spain, analyzed the spatial patterns of territorial call variation at different scales (individuals, populations, and broad geographic areas), and related acoustic variability to patterns of isolation by geographic distance and by landscape unsuitability (calculated by building a predictive model of habitat suitability). The differentiation of spectro-temporal call features resulted from both isolation by distance and isolation by landscape unsuitability mechanisms. Landscape connectivity was often a better determinant of call differentiation than simple straight-line distance between individuals, providing the first evidence that call transmission can be limited by the presence and distribution of patches of adequate habitat, which likely mediates bird dispersal. Landscape patchiness resulted in a reduction of acoustic diversity (repertoire size) within populations, and a parallel increase in differentiation among populations. Landscape bioacoustics can represent a promising tool for estimating population structure, although the study of animal communication cannot be viewed as an alternative, but a source of complementary information to genetics, given that it provides evidence of male-male transmission and social and cultural phenomena that are currently undetectable from molecular data.  相似文献   

20.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号