首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Rates of respiration and protein synthesis were measured during embryonic and larval development of Antarctic asteroids with different life-history modes (non-feeding and feeding larvae: Acodontaster hodgsoni, Porania antarctica, Odontaster meridionalis). Patterns of respiration for these species all show an increase during embryogenesis, with subsequent maintenance of routine respiration (“starvation resistance”), even in the absence of food for ~4 months (O. meridionalis). Fractional rates of protein synthesis (i.e., rate per unit mass of whole-body protein content) in the Antarctic larvae are essentially identical to those of temperate species. Larvae of O. meridionalis had an average fractional synthesis rate of 0.52% ± 0.05 h−1 at −1.0°C, which is comparable to the temperate asteroid Asterina miniata at 0.53% ± 0.14 h−1 at 15°C. For embryos of the asteroids A. hodgsoni and P. antarctica, fractional rates of protein synthesis (~0.2% h−1) also are comparable to those reported for embryos of temperate echinoderm species. While rates of synthesis are high, rates of protein deposition are relatively low (percent of protein synthesized that is retained for growth). During a ~4 month growth period for larvae of O. meridionalis, the average protein depositional efficiency was 5.2%. This contrasts with higher rates of depositional efficiency reported for similar developmental stages of temperate echinoderm species. The biological significance of maintaining high rates of macromolecular synthesis for species with low rates of cell division and low protein depositional efficiencies is intriguing in the context of understanding the mechanistic bases of extended life spans and dispersal potential in response to changing Antarctic environments.  相似文献   

2.
Growth and grazing loss rates of naturalPhaeocystis sp. single cells were measured using a seawater dilution technique. Measurements were performed during an intensePhaeocystis sp. bloom in the North Sea between 19 April and 5 May 1988. Experimental results yielded rapid carbon turnover rates. Population growth rates varied from 0.033 to 0.098 h–1, grazing loss rates from 0.037 to 0.174 h–1. From measured growth rates, average doubling rages of 1.3 doublings d–1 were calculated. The growth rates would have resulted in maximum carbon production rates of 146 mg C m–3 d–1. Grazing rates increased in the course of the bloom and exceeded growth rates at the end. Grazing loss was caused primarily by microzooplankton feeding. Ciliates and heterotrophic dinoflagellates were identified as the major potential consumers of single cells ofPhaeocystis sp. at the beginning of the bloom. The grazing impact of larger microzooplankton species appeared to increase during the progressing bloom.  相似文献   

3.
R. Villanueva 《Marine Biology》2000,137(1):161-168
 Apart from one study that reported growth of less than one increment per day in statoliths of the squid Alloteuthis subulata, most studies so far have presumed that one increment was laid down per day in the statoliths of the squid species they examined. The present study provides evidence of differential daily growth rates in embryonic statoliths of the squid Loligo vulgaris Lamarck, 1798, thus confirming a previous report for A. subulata. Incremental growth rates of L. vulgaris statoliths differ as a function of temperature. Squid embryos were incubated in the laboratory at three temperatures (12.0, 15.5 and 21.1 °C), and tetracycline staining was used to follow statolith growth. This growth slowed in squid exposed to the lowest temperature, but recovered when the squid were returned to warm conditions, indicating statolith adaptation. Statolith growth rate after incubation at 12 °C was 1.3% d−1 and reached 6.1% d−1 for squids exposed to 21.1 °C. Statoliths from embryos incubated at 15.5 °C yielded a rate of 1 increment d−1 and a mean daily growth of 2.2 μm in the dorsal dome area of the statolith. In contrast, the slow growth of statoliths incubated at 12 °C yielded a mean daily growth of only 0.9 μm in the dorsal dome and the readings resulted in a less-than-daily increment-deposition rate. Received: 9 October 1999 / Accepted: 30 March 2000  相似文献   

4.
R. Villanueva 《Marine Biology》2000,136(3):449-460
Over the past decade, statolith interpretation has resulted in a major advance in our knowledge of squid population-dynamics, but the way in which environmental conditions affect the statolith increment-deposition ratio remains virtually unknown. The object of the present study was to determine the effect of temperature on this process, using tetracycline marks to validate statolith growth in Loligo vulgaris Lamarck, 1798 under rearing conditions equivalent to severe winter (11 °C) and summer (19 °C) temperature regimes. Tetracycline marking was performed every 10 d (at 10, 20, 30, 40, 50 and 60 d of age). The newly hatched squid paralarvae were slightly smaller in summer than those hatched in winter. Survival rates were similar in both cultures, but growth rates (wet mass) of summer squids were double those in winter. At hatching, statoliths were already longer in the summer squids, and growth rates were 2% d−1 as opposed to 0.9% d−1 for winter statoliths. For the dorsal dome area of the statolith, where more increment counts were made, statolith growth was of 3.25 μm d−1 in summer, and daily increment deposition was confirmed in 87% of the statoliths. The slow growth of statoliths at winter temperatures yielded a mean growth of 1.1 μm d−1– insufficient to discern the increments using light microscopy. Subsequent SEM observation enabled only 21% of the winter statoliths to be read; these also indicated a deposition rate of one increment d−1. Since the life span of L. vulgaris is ≃1 yr, squids will experience at least one winter during their life cycle, and this might be visible on the statolith. Received: 28 June 1999 / Accepted: 20 December 1999  相似文献   

5.
Stable isotopes are increasingly used in the study of trophic interactions of many aquatic animals and most recently cephalopods. To evaluate the application of the method to squids, it is important to assess isotopic differences among and within consumer tissues that may confound the resolution of ecological relationships. Inter- and intra-tissue isotopic variation was examined in 55 individuals of the oceanic squid Todarodes filippovae that were collected at the beginning of April 2000 in the southwestern Indian Ocean (between 44°S, 76°E, and Saint Paul and Amsterdam islands, 38°S, 78°E). Delipidated soft tissues (mantle, arm, buccal mass, gill and reproductive organs) showed small δ13C and δ15N differences, which were probably tissue-specific. A lower carbon value was observed in the digestive gland as a consequence of incomplete lipid removal. Hard tissues, such as beaks and gladii, had lower 15N values than soft tissues, which can be explained by the presence of chitin, a 15N-depleted molecule. Females (n = 38) and males (n = 17) had identical δ13C values, but females showed higher δ15N values than males. The difference was size-related rather than sex-related, however, as females were generally larger than males. A comparison of similar-sized females and males produced identical nitrogen values. These data suggest dietary shifts from lower to higher trophic levels during growth, because δ15N values of large T. filippovae were much higher than that of small specimens. As expected, nitrogen values of lower beaks and gladii of large squids increased from the oldest to the most recently formed region, reflecting the progressive growth of chitinized tissues in parallel with dietary changes. Sequential sampling along the growth increments of squid beaks and gladii can likely be used to produce a chronological record of dietary information throughout an individual’s history.  相似文献   

6.
As much as 89, 176 and 292 g Cd g-1 dry weight were accumulated by adult Crassostrea virginica after treatment for 40 wk with 5, 10 and 15 g Cd kg-1, respectively, in flowing seawater at ambient salinity and temperature without mortalities. Cadmium accumulation increased with increased concentration of cadmium in seawater; greater amounts were accumulated during the summer months. Uptake patterns measured as cadmium content were similar among the total soft parts, gill, mantle and visceral mass. A continuous increase of cadmium concentration in the visceral mass was observed. This differed from the uptake patterns observed as cadmium concentration in gill, mantle and total soft parts. Although cadmium accumulation in the total soft parts and the tissues was curvilinear over the entire study period, significant linear relations between cadmium concentration and time indicated a general increasing trend. At seawater temperatures below 6°C, when oysters were not actively feeding, cadmium concentrations in the total soft parts varied significantly between treatments, but not within treatments. In the tissues, the rate of uptake expressed as cadmium concentrations was visceral mass>gillmantle. Cadmium concentration in the total soft parts varied inversely with dry weight, whereas cadmium concentration in the total soft parts increased, whereas the content decreased. Cadmium concentration decreased in mantle and gill but increased in the visceral mass during spawning, whereas cadmium content decreased in all tissues. Regression analyses indicated that during spawning dry weight decreased at the same rate in gill and mantle, but they lost less weight and lost it more slowly than visceral mass. Also, during spawning, cadmium content decreased in mantle and gill at the same rate but more slowly than in the visceral mass. In mid-August, Cd concentration decreased despite the continuous addition of cadmium to the seawater; however, Cd content increased, suggesting that organism weight was responsible for fluctuations in cadmium concentrations.  相似文献   

7.
Interactions between mercury and selenium accumulation and subcellular binding inAsterias rubens (L.), collected in 1987 from Lille Bælt at Middelfart, Funen, Denmark, were investigated in laboratory experiments. Sea stars exposed to 10µg Hg l–1 for 30 d accumulated mercury in body wall, tube feet and stomach linearly with time at 1.2, 1.2 and 0.5µg Hg g–1 dry wt d–1, respectively. Mercury was accumulated in pyloric caeca and coelomic fluid initially at 1.4µg Hg g–1 dry wt d–1 and 9.4 ng Hg ml–1 d–1, respectively; after 10 d uptake rates decreased. Sea stars exposed to 75µg Se-SeO 3 - - l–1 accumulated selenium linearly with time over 30 d in the stomach, pyloric caeca, tube feet and body wall at 2.0, 1.2, 1.2 and 0.6µg Se g–1 dry wt d–1. Sea stars exposed to 75µg Se-SeO 4 - - l–1 maintained selenium levels in the coelomic fluid at 75µg Se l–1 over 30 d. Exposure to selenate did not alter the selenium concentrations in the tissues. Sea stars exposed concurrently to 75µg Se-SeO 3 - - and 10µg Hg l–1 accumulated more mercury and selenium in tube feet and body wall than did sea stars exposed to the two elements alone. In pyloric caeca and stomach concurrent exposure reduced accumulation of both elements. Mercury was bound predominantly in the insoluble fraction of the tissues, and soluble mercury was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Ca. half of the selenium recovered was bound in the insoluble fraction, and soluble selenium was bound in proteins of high (> 70 kilodaltons) or very low (< 6000 daltons) molecular weight. Interaction between the two elements was exerted predominantly in the insoluble fraction of the tissues.  相似文献   

8.
Larvae of Clyde spring-spawning Clupea harengus L. and hatchery-produced Scophthalmus maximus (L.) were reared from hatching through metamorphosis in 1980 and 1981 in laboratory tanks and in large enclosures under various light, temperature, and feeding regimes in order to study otolith ring deposition and growth under different conditions. Ring deposition and growth rates were significantly affected by rearing conditions in both species. The ring deposition rates observed under the conditions tested ranged from 0.34 to 0.92 rings d-1 in herring larvae, and from 0.07 to 1.0 rings d-1 in turbot larvae. Growth rates ranged from 0.11 to 0.42 mm d-1 in herring and from 0.05 to 0.27 mm d-1 in turbot. The number of otolith rings was dependent on the growth rate of the individual larva. At the population level, higher ring deposition rates were observed in faster growing populations. In herring larvae, the relationship between average growth rate and average ring deposition rate was logarthmic, reaching an asymptote at 1 ring d-1 for growth rates approaching 0.40 mm d-1. The relationship was linear for turbot larvae for the range of growth rates observed.  相似文献   

9.
In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (g l–1) and in situ production rates (g C l–1 d–1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 m fraction, 38% in the 2 to 5 m size fraction, and the remainder in size classes >5 m. Carbon-specific growth rates (k), as doublings d–1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d–1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m–3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

10.
Species-specific sedimentation and sinking velocities of diatoms   总被引:2,自引:0,他引:2  
U. Passow 《Marine Biology》1991,108(3):449-455
Sedimentation rates were determined for various diatom species, and both average and maximum sinking velocities of sedimenting diatoms were calculated during a spring bloom investigation in the central Baltic Sea in 1986. Up to 25 and 50% of theChaetoceros spp. andThalassiosira levanderi populations, respectively, sedimented daily. Daily sedimentation rates of other diatoms, dinoflagellates andMesodinium rubrum, however, were less than 1% of their respective standing stocks. TheT. levanderi population was divided into two subpopulations: while one was sinking, the second was actively dividing (recognizable by paired-cell stages) with a specific growth rate of >0.2 to 0.3 d–1. These paired cells were never found in sediment trap samples. The average sinking velocity ofChaetoceros spp. was 15 to 30 m d–1; that ofT. levanderi was higher. The maximum sinking velocity of cells was at least 70 m d–1. According to these observations, the formation of aggregates (which enhances sinking velocity), and their sedimentation, represent a highly selective process. This indicates that diatom aggregates do not act as roving filters, sweeping the water clear while sinking.  相似文献   

11.
Accumulation rates of cadmium, the amount of food ingested and assimilated, the amount of oxygen consumed and changes in dry flesh weight have been measured in Mytilus edulis L. exposed to 0, 10 and 100 ppb cadmium for 17 d in aquaria with seawater flowing continously and at constant algal concentration. The accumulation rates were linear at 10 and 100 ppb, amounting to 0.58 and 8.89 ppm d-1, respectively. Body loads up to 150 ppm caused no effects on either clearance, ingestion, assimilation, respiration, or growth. High net growth efficiencies between 55–59% were obtained, indicating near optimal experimental conditions. It is suggested that the setup and experimental procedure provide an excellent tool in the study of accumulation and sublethal effects of environmental pollutants in suspension feeding bivalves.  相似文献   

12.
C. Park  M. R. Landry 《Marine Biology》1993,117(3):415-421
Egg production by Undinula vulgaris, collected off Kaneohe Bay, Hawaii, was measured under field and laboratory conditions on 16 occasions from June to December 1991. In situ rates ranged from 0 to 15.7 eggs female-1 d-1, with a mean of 6.4 eggs female-1 d-1, 2.1% female body carbon d-1. Maximum in situ production was 53 eggs female-1 d-1, 17.2% C d-1. Average egg production (Y, eggs female-1 d-1) was related to the concentration of particulate carbon (X, g C l-1) by the Ivlev function, Y=13.9[1-e-0.0097 (x-10)], with R 2=0.96. Individuals with the same feeding history produced more eggs at lower temperatures in the laboratory. Egg production was not significantly correlated with dry weight, and no noticeable temporal trend was found. Despite the elevated habitat temperatures (26 to 27°C) of this subtropical copepod, maximum fecundity of U. vulgaris was comparable to, but average rates were lower than, egg production rates of similarly-sized, temperate and borcal species of the genus Calanus. Our results caution against broad extrapolations of the temperature-growth relationship for temperate coastal copepods to species from poorly studied, oligotrophic regions of the oceans.Contribution No. 3257 from the School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA  相似文献   

13.
Marine invertebrates are thought to accumulate 210Po primarily from their food. In this study, a pulse-chase methodology was used to examine the assimilation and depuration of 210Po by Mytilus edulis from the common marine alga Isochrysis galbana. The digestion of 210Po from I. galbana occurred via a biphasic process, characteristic of a rapid (extracellular) and slow (intracellular) digestion typical of marine bivalves. The mantle/gill and foot have no known digestive role, yet their 210Po specific activities increased after 24 h. It is proposed that this increase in 210Po specific activity was related to 210Po being incorporated into these tissues from 210Po assimilated from I. galbana during extracellular digestion. It is proposed that the linear loss of 210Po previously accumulated by control mussels was related to the continual state of renewal and replacement of cellular proteins, with 210Po turnover and metabolism governed by protein turnover and metabolism. M. edulis' assimilation efficiency of 210Po from the 210Po-labelled alga was calculated to be 17.2 ± 2.1%, and thus similar to that of Ag, Cd, Co, Se and Zn by bivalves from other marine algae species. It is proposed that the assimilation efficiency of 210Po is a function of protein assimilation. Received: 27 August 1998 / Accepted: 3 September 1999  相似文献   

14.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

15.
Domoic acid (DA), the amnesic shellfish toxin, is a food-web-transferred algal toxin that has been detected in many marine organisms from copepods to whales. However, cephalopods, which are important members of the food chain, have never been implicated in DA transfer or accumulation. Here, we present data showing relevant values of DA detected in the common octopus (Octopus vulgaris) from the Portuguese continental coast. Even though DA is hydrophilic and is not expected to be accumulated in the tissues, DA was always detected in our octopus tissue samples. Tissue distribution of DA revealed that the digestive gland and the branchial hearts are the main organs of DA accumulation. Highly variable DA concentrations, ranging from 1.1 to 166.2 g DA g–1, were observed in the digestive glands. Low levels of DA were detected in the digestive tract (stomach and intestine) and could be a consequence of high digestion rates or a result of non-exposure to toxic vectors during the sampling period. In fact, octopus prey, such as bivalves, crustaceans and fishes, are known to occasionally work as DA vectors. Consequently, DA uptake into octopus tissues is likely sporadic. Similar low levels were detected in the kidney, gills, systemic heart, posterior salivary glands and mantle, and no DA was found in either the gonads or the ink sac. These data are the necessary first step towards achieving an understanding of the accumulation of phycotoxins in O. vulgaris.Communicated by S.A. Poulet, Roscoff  相似文献   

16.
Grazing impact of microzooplankton on phytoplankton was investigated on the Grand Bank, Newfoundland, Canada, in April, July and October 1984, using a seawater dilution method. In April a large proportion of chlorophylla was in the microplankton size fraction (> 20µm) while in mid-summer and fall most was in the nanoplankton size fraction (< 20µm). Diatoms were the dominant phytoplankters in April, while undetermined flagellates and coccolithophores were abundant in other seasons. Major grazers were oligotrichous ciliates in all seasons. Instantaneous grazing rates on nanophytoplankton, as measured by changes in chlorophylla, varied from 0.12 to 0.43 d–1 and those on microphytoplankton from 0.19 to 0.68 d–1. Grazing rates did not change over 24 and 48 h intervals. This level of grazing corresponded to a daily loss of about 20 and 30% of standing stock of chlorophylla and about 50 and 70% loss of potential production in the two size fractions respectively. Taxon-specific grazing rates, calculated from microscopic enumeration, showed that small diatoms were grazed heavily, and their growth was controlled by grazing in late spring. In late summer and fall, undetermined flagellates and coccolithophores were also grazed at high rates but their growth rates were higher than the grazing rates, and therefore, were not controlled by microzooplankton. In general, microzooplankton grazed on whatever appropriate sized food was dominant in the experimental water. Their potential ability to control the growth of certain food species may be one of the causes determining the species composition of phytoplankton communities.  相似文献   

17.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

18.
Feeding selectivity of the intertidal scavenging gastropod Nassarius festivus on four types of tissue (soft tissue, adductor muscle, foot, mantle margin) of the venerid clam Marcia hiantina was studied by field observations and laboratory experiments. Both approaches showed similar results with the soft tissue and adductor muscle being much preferred. As the energy content of the four types of tissue was similar and individuals of N. festivus rearing in different types of tissue obtained similar growth rates both in shell length and in body wet weight, differential consumption was most likely determined by the palatability of the tissues. Energy intake in a meal for N. festivus was estimated at 10.92, 9.17, 3.86 and 2.02 cal meal−1 ind−1 for soft tissue, adductor muscle, mantle margin, and foot, respectively. In view of the small size and sporadic distribution of the carrion, and intense competition among the conspecifics, selective feeding on more palatable tissues maximizes energy intake for scavengers like N. festivus.  相似文献   

19.
The relationship between food ingested and NH + 4 excretion rate was investigated for female Calanus pacificus collected in August, 1982, from the San Juan Archipelago, Washington State, USA. The copepods were preconditioned to 6 densities of the diatom Thalassiosira weissflogii (0 to 104 cells ml–1) for 30 h before the experiment. The experiment was conducted with nutrients added in excess to maintain equal rates of NH + 4 uptake by the diatoms at all densities. Although ingestion rates of C. pacificus varied from 0 to over 20% of body N d–1 at the different food levels, excretion was a constant 6.6 nM NH + 4 copepod–1 h–1 or about 10% of body N d–1. This ingestion-excretion relationship, which is consistent with previous respiration and fecundity studies, suggests that the ecological dominance of C. pacificus only under conditions of high food abundance may be due to a dramatic increase in its growth efficiency as ingestion increases above the level supporting a constant metabolic rate. The maintenance of a constant level of metabolism during relatively short periods of low food abundance may be advantageous if it allows the copepod to exploit more effectively short-term variability in its food resulting from environmental heterogeneity or vertical migration.Contribution No. 1360 from the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

20.
Sheets of mantle tissue from above the mantle line of Mercenaria mercenaria were incubated for 2, 6 and 20 h at 20°C in 50 Ci 3H-glycine in 50 ml artificial seawater. Incorporation of tritium into soluble proteins excreted by the mantle and into tissue proteins was followed. The excretion of soluble protein continued throughout the experiment; the proportion of incorporated label excreted reached 17% by 20 h. The initiation of excretion of labelled protein seemed to lag 60 to 70 min behind the initiation of protein synthesis. Protein synthesis by the mantle contributed to proteins of the extrapallium and mantle chambers and, thus, may be involved in synthesis and regulation of proteins involved in the shell-formation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号