首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Flow regulation has reduced the exchange of water, energy, and materials between rivers and floodplains, caused declines in native plant populations, and advanced the spread of nonnative plants. Naturalized flow regimes are regarded as a means to restore degraded riparian areas. We examined the effects of flood regime (short [SIFI] vs. long [LIFI] inter-flood interval) on plant community and soil inorganic nitrogen (N) dynamics in riparian forests dominated by native Populus deltoides var. wislizenii Eckenwalder (Rio Grande cottonwood) and nonnative Tamarix chinensis Lour. (salt cedar) along the regulated middle Rio Grande of New Mexico. The frequency of inundation (every 2-3 years) at SIFI sites better reflected inundation patterns prior to the closure of an upstream dam relative to the frequency of inundation at LIFI sites (> or =10 years). Riparian inundation at SIFI sites varied from 7 to 45 days during the study period (April 2001-July 2004). SIFI vs. LIFI sites had higher soil moisture but greater groundwater table elevation fluctuation in response to flooding and drought. Rates of net N mineralization were consistently higher at LIFI vs. SIFI sites, and soil inorganic N concentrations were greatest at sites with elevated leaf-litter production. Sites with stable depth to ground water (approximately 1.5 m) supported the greatest leaf-litter production. Reduced leaf production at P. deltoides SIFI sites was attributed to drought-induced recession of ground water and prolonged inundation. We recommend that natural resource managers and restoration practitioners (1) utilize naturalized flows that help maintain riparian groundwater elevations between 1 and 3 m in reaches with mature P. deltoides or where P. deltoides revegetation is desired, (2) identify areas that naturally undergo long periods of inundation and consider restoring these areas to seasonal wetlands, and (3) use native xeric-adapted riparian plants to revegetate LIFI and SIFI sites where groundwater elevations commonly drop below 3 m.  相似文献   

2.
Annually emerging cicadas are a numerically and ecologically dominant species in Southwestern riparian forests. Humans have altered disturbance regimes that structure these forests such that floods are less common and wildfires occur more frequently than was historically the case. Impacts of these changes on primary consumers such as riparian cicadas are unknown. Because cicadas are consumed by a variety of animal species, disturbances that alter timing of their emergence or abundance could have consequences for species at higher trophic levels. We trapped emerging cicadas (Tibicen dealbatus) in burned and unburned riparian forest plots along the Middle Rio Grande in central New Mexico (USA) to determine effects of wildfire and vegetation structure on their density and phenology. We measured vegetation variables and soil temperature at cicada traps and related these variables to variation in emergence density and phenology. We also experimentally heated soil under emergence traps to examine the relationship between soil temperature and emergence phenology. Emergence density was similar in wildfire and unburned plots, though emergence date averaged earlier in wildfire plots and experimentally heated traps. We identified models containing cottonwood proximity (distance from the nearest cottonwood tree) and cottonwood canopy coverage as the most parsimonious explanations of emergence density at each trap. Model selection results were consistent with the literature and field observations that showed that cottonwood trees are an essential resource for T. dealbatus. Cottonwood canopy was also correlated with low soil temperatures, which are associated with later emergence dates. Failure of cottonwoods to reestablish following wildfire could result in cicadas emerging at lower densities and at earlier dates. For cicadas to emerge at densities and times that provide the greatest benefits to birds and other riparian-obligate secondary consumers, riparian forests should be protected from fire, and native vegetation in wildfire sites should be restored.  相似文献   

3.
Monitoring responses by birds to restoration of riparian vegetation is relatively cost-effective, but in most assessments species-specific abundances, not demography, are monitored. Data on birds collected during the nonbreeding season are particularly lacking. We captured birds in mist nets and resighted banded birds to estimate species richness and diversity, abundance, demographic indexes, and site-level persistence of permanent-resident and overwintering migrants in remnant and restored riparian sites in California. Species richness in riparian remnants was significantly higher than in restored sites because abundances of uncommon permanent residents were greater in remnants. Species richness of overwintering migrants did not differ between remnants and restored sites. Responses among overwintering migrants (but not permanent residents) to remnant and restored riparian sites differed. Capture rates were higher in remnant or restored riparian sites for 7 of 10 overwintering migratory species. For Lincoln's Sparrows (Melospiza lincolnii) and White-crowned Sparrows (Zonotrichia leucophrys) proportions of older birds were significantly higher in remnants, even though capture rates of these species were higher in restored sites. Overwinter persistence of 4 migrant species was significantly higher in remnant than in restored sites. A higher proportion of Hermit Thrushes (Catharus guttatus, 56.3%), older Fox Sparrows (Passerella iliaca, 57.1%), Lincoln's Sparrows (59.7%), and White-crowned Sparrows (67.8%) persisted in remnants than restored sites. Our results suggest restored riparian sites provide habitat for a wide variety of species in comparable abundances and diversity as occurs in remnant riparian sites. Our demographic and persistence data showed that remnants supported some species and age classes to a greater extent than restored sites.  相似文献   

4.
Ranches are being converted to exurban housing developments in the southwestern United States, with potentially significant but little-studied impacts on biological diversity. We counted birds in grasslands and savannas in southeastern Arizona that were grazed by livestock, embedded in low-density exurban housing developments, or both, or neither. Species richness and bird abundance were higher in exurban neighborhoods than in undeveloped landscapes, independent of livestock grazing. The positive response to development was particularly evident among doves, quail, hummingbirds, aerial insectivores, and some but not all ground-foraging sparrows. Effects of livestock grazing were comparatively minor and mostly involved birds with requirements for tall ground cover or the lack of it. The average rank correlation between counts of individual species and housing density was positive across all transects. However, this relationship disappeared among the exurban transects alone, and bird species richness on the exurban transects was negatively correlated with the number of homes nearby. These results suggest that the positive influence of exurban development on avian abundance and variety was greatest at the lowest housing densities. We attribute the attraction of many birds to exurban development to an oasis effect, in which resources otherwise scarce in arid southwestern environments (shade, nectar, nest sites, and especially water) are relatively abundant around exurban home sites. This finding is consistent with the hypothesis that exurban home sites represented resource supply points inside birds' home ranges otherwise consisting mostly of natural vegetation.  相似文献   

5.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

6.
Russian-olive ( Elaeagnus angustifolia ) is a small Eurasian tree that has escaped from cultivation and become naturalized, primarily along watercourses throughout the western United States. We examined germination and establishment of Russian-olive and plains cottonwood ( Populus deltoides ), the principal native riparian tree of the Great Plains, under a range of experimental moisture and light conditions. The fewest seedlings established under the driest conditions; seedling biomass was predictably lower in the shade; root-to-shoot ratios were higher for cottonwood, higher in the sun, and higher under drier conditions. Several interactions were also significant. The timing of germination and mortality varied between plains cottonwood and Russian-olive: cottonwood germinated in mid-June in all treatments in a single pulse with subsequent mortality; the timing and amount of Russian-olive germination differed substantially across treatments with little net mortality. Differences in life-history traits of these species, including seed size, viability, and dispersal, help explain treatment differences. Russian-olive will likely remain an important component of riparian communities along both unregulated and regulated western rivers because it succeeds under conditions optimal for cottonwood establishment and under many conditions unfavorable for cottonwood. Furthermore, many western states still encourage planting of Russian-olive, and control techniques tend to be labor-intensive and expensive.  相似文献   

7.
Abstract: In the United States multispecies habitat conservation plans were meant to be the solution to conflicts between economic development and protection of biological diversity. Although now widely applied, questions exist concerning the scientific credibility of the conservation planning process and effectiveness of the plans. We used ants to assess performance of one of the first regional conservation plans developed in the United States, the Orange County Central‐Coastal Natural Community Conservation Plan (NCCP), in meeting its broader conservation objectives of biodiversity and ecosystem‐level protection. We collected pitfall data on ants for over 3 years on 172 sites established across a network of conservation lands in coastal southern California. Although recovered native ant diversity for the study area was high, site‐occupancy models indicated the invasive and ecologically disruptive Argentine ant (Linepithema humile) was present at 29% of sites, and sites located within 200 m of urban and agricultural areas were more likely to have been invaded. Within invaded sites, native ants were largely displaced, and their median species richness declined by more than 60% compared with uninvaded sites. At the time of planning, 24% of the 15,133‐ha reserve system established by Orange County NCCP fell within 200 m of an urban or agricultural edge. With complete build out of lands surrounding the reserve, the proportion of the reserve system vulnerable to invasion will grow to 44%. Our data indicate that simply protecting designated areas from development is not enough. If habitat conservation plans are to fulfill their conservation promise of ecosystem‐level protection, a more‐integrated and systematic approach to the process of habitat conservation planning is needed.  相似文献   

8.
Abstract:  We studied the potential for native birds to control insect pests on farms. We assessed habitat factors correlated with diversity, distribution, and insect-foraging activity of native birds on farms in north-central Florida and then characterized common bird species that consumed insect biomass in crops as "functional insectivores" (birds most likely to contribute to pest control). Analyses of point-count survey data and foraging observations collected over 2 years on paired organic and conventional farm sites indicated that (1) farms supported most (82–96%) land birds known to breed in the region; (2) bird species richness and abundance varied significantly with matrix habitat and field border type (but not with year or farm management type); (3) the highest bird abundances were associated with mixed crop plantings, field borders, and adjacent matrix composed of forest and hedge; and (4) abundances of 10 species identified as functional insectivores were primarily influenced by crop type (mixed crops attracted significantly more insect foragers into fields than monocrops). We documented birds eating pest insects in crops and did not observe substantive crop damage by birds during growing-season observations. We advocate use of the term functional insectivore to emphasize the potential positive role of avian insectivory on farms during the growing season.  相似文献   

9.
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or reversion to native vegetation) has to be conditioned on the current landscape context and the species group of interest. Our results show that housing density and residential land cover were significant predictors of forest bird species richness, and their prediction strengths are likely to increase as development continues.  相似文献   

10.
Flow regulation and fragmentation of the world's rivers threaten the integrity of freshwater ecosystems and have resulted in the loss or decline of numerous fish species. Pelagic-spawning fishes (pelagophils) are thought to be particularly susceptible to river regulation because their early life stages (ichthyoplankton) drift until becoming free-swimming, although the extent of transport is largely unknown. Transport velocity and distance were determined for passively drifting particles, which mimicked physical properties of ichthyoplankton, in two large, regulated rivers (Rio Grande and Pecos River) of the arid Southwest United States. Particle drift data were incorporated into celerity-discharge equations (r2 > 0.90; P < 0.001), and reach-specific transport velocity was modeled as a function of discharge. Transport velocities of particles exceeded 0.7 m/s in all river reaches during typical spawning flows (i.e., reservoir releases or rainstorms) and were greatest in highly incised and narrow channel reaches. Mean transport distance of particles released in the Pecos River during sustained reservoir flows (141.1 km; 95% CI = 117.0-177.5 km) was significantly longer than during declining reservoir flows that mimicked a natural rainstorm (52.4 km; 95% CI = 48.8-56.5 km). Mean transport distance of particles in the Rio Grande during sustained reservoir flows was 138.7 km (95% CI = 131.0-147.2 km). There are 68 dams and 13 reservoirs that fragment habitats and regulate flow in the Rio Grande Basin (Rio Grande and Pecos River) in areas historically occupied by pelagophils. While the basin historically provided 4029 km of free-flowing riverine habitat, reservoir habitat now represents > 10% of the longitudinal distance. Only five unfragmented nonreservoir reaches > 100 km remain in the Rio Grande, and two remain in the Pecos River. Pelagophils were extirpated from all reservoirs and from nearly all short, fragmented reaches (< 100 km) of the Rio Grande Basin, but at least some fraction persisted in all longer reaches (> 100 km). The recovery and long-term persistence of pelagophils in regulated rivers, including those in this study, will likely depend on reestablishment and protection of long unfragmented reaches coupled with mimicry of the natural flow regime.  相似文献   

11.
Fire is a natural part of most forest ecosystems in the western United States, but its effects on nonnative plant invasion have only recently been studied. Also, forest managers are engaging in fuel reduction projects to lessen fire severity, often without considering potential negative ecological consequences such as nonnative plant species introductions. Increased availability of light, nutrients, and bare ground have all been associated with high-severity fires and fuel treatments and are known to aid in the establishment of nonnative plant species. We use vegetation and environmental data collected after wildfires at seven sites in coniferous forests in the western United States to study responses of nonnative plants to wildfire. We compared burned vs. unburned plots and plots treated with mechanical thinning and/or prescribed burning vs. untreated plots for nonnative plant species richness and cover and used correlation analyses to infer the effect of abiotic site conditions on invasibility. Wildfire was responsible for significant increases in nonnative species richness and cover, and a significant decrease in native cover. Mechanical thinning and prescribed fire fuel treatments were associated with significant changes in plant species composition at some sites. Treatment effects across sites were minimal and inconclusive due to significant site and site x treatment interaction effects caused by variation between sites including differences in treatment and fire severities and initial conditions (e.g., nonnative species sources). We used canonical correspondence analysis (CCA) to determine what combinations of environmental variables best explained patterns of nonnative plant species richness and cover. Variables related to fire severity, soil nutrients, and elevation explained most of the variation in species composition. Nonnative species were generally associated with sites with higher fire severity, elevation, percentage of bare ground, and lower soil nutrient levels and lower canopy cover. Early assessments of postfire stand conditions can guide rapid responses to nonnative plant invasions.  相似文献   

12.
Artificially creating social stimuli may be an effective tool for facilitating settlement by rare and/or declining species into suitable habitat. However, the potential consequences for other community members have not been explored and should be considered when evaluating the overall utility of using such management strategies. I report on nontarget, community-wide effects that occurred when manipulating social cues of two competitors that are species of concern in the western United States, the dominant Least Flycatcher (Empidonax minimus) and the subordinate American Redstart (Setophaga ruticilla). The experiment consisted of surveying birds during a pretreatment year, which allows for the control of baseline communities, and a treatment year, in which treatments were applied just prior to settlement by migratory birds. Treatments included broadcasting songs of flycatchers and redstarts and were compared to controls. While the addition of redstart cues did not significantly influence community structure, the addition of flycatcher cues reduced species richness of migratory birds by approximately 30%. This pattern was driven by an absence of local colonizations of small-bodied migrants to sites with added flycatcher cues, rather than by local extinctions occurring from manipulations. The artificial flycatcher stimuli were more responsible for declines in species richness than were changes in actual flycatcher densities. I conclude by identifying some fundamental issues that managers and conservation practitioners should weigh when considering simulating social cues for species conservation prior to implementation.  相似文献   

13.
Human Impacts on Regional Avian Diversity and Abundance   总被引:1,自引:0,他引:1  
Abstract: Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co‐occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem stress); and biodiversity peaks at intermediate levels of human influence (intermediate disturbance). To test these hypotheses, we compared anthropogenic land cover and housing units, as indices of human influence, with bird species richness and abundance across the Midwestern United States. We modeled richness of native birds with 12 candidate models of land cover and housing to evaluate the empirical evidence. To assess which species were responsible for observed variation in richness, we repeated our model‐selection analysis with relative abundance of each native species as the response and then asked whether natural‐history traits were associated with positive, negative, or mixed responses. Native avian richness was highest where anthropogenic land cover was lowest and housing units were intermediate based on model‐averaged predictions among a confidence set of candidate models. Eighty‐three of 132 species showed some pattern of association with our measures of human influence. Of these species approximately 40% were negatively associated, approximately 6% were positively associated, and approximately 7% showed evidence of an intermediate relationship with human influence measures. Natural‐history traits were not closely related to the direction of the relationship between abundance and human influence. Nevertheless, pooling species that exhibited any relationship with human influence and comparing them with unrelated species indicated they were significantly smaller, nested closer to the ground, had shorter incubation and fledging times, and tended to be altricial. Our results support the ecosystem‐stress hypothesis for the majority of individual species and for overall species diversity when focusing on anthropogenic land cover. Nevertheless, the great variability in housing units across the land‐cover gradient indicates that an intermediate‐disturbance relationship is also supported. Our findings suggest preemptive conservation action should be taken, whereby areas with little anthropogenic land cover are given conservation priority. Nevertheless, conservation action should not be limited to pristine landscapes because our results showed that native avian richness and the relative abundance of many species peaked at intermediate housing densities and levels of anthropogenic land cover.  相似文献   

14.
Scale Perspectives on Avian Diversity in Western Riparian Ecosystems   总被引:5,自引:0,他引:5  
Conservation of riparian vegetation in western North America has, in part, emphasized providing habitats for a locally diverse avifauna. Site diversity, especially relative to the number of species present, is generally high within riparian avifaunas. Between-habitat diversity changes across a watershed, with riparian species assemblages differing most from upland assemblages at the highest and lowest elevations. This pattern can be attributed to enhanced avian movements within the riparian vegetation. The corridors for bird movements, in turn, facilitate faunal mixing on a broader scale, influencing regional diversity within landscapes. Riparian ecosystems are viewed as connectors of forests across fragmented landscapes. In western settings, however, they are highly linearized forests transecting watersheds between upland associations of high elevations and very different associations at lower elevations. Regionally, riparian vegetation represents linear islands that are internally both floristically and faunistically dynamic rather than mere bridges of homogeneous vegetation in landscape networks. The significance of riparian vegetation as habitat for western birds has been defined primarily at the local level. Conservation activities favoring site diversity are short-sighted, however, and could have severe consequences for unique elements of riparian avifaunas. Conservation actions must evaluate how local activities alter potential dispersal opportunities for ecological-generalist versus riparian-obligate species. Maintaining the character and integrity of riparian avifaunas requires planning from regional and continental perspectives.  相似文献   

15.
Abstract:  Ecological change is often hard to document because of a lack of reliable baseline data. Several recent then-versus-now surveys of temperate forest and grassland communities demonstrate losses of local plant species, but most are based on data from a single site. We resurveyed understory communities in 62 upland forest stands in northern Wisconsin (U.S.A.) for which quantitative baseline data exist from 50 years ago. These stands are within a largely unfragmented region but vary in species composition and successional stage. We collected data on changes in (1) total and native species richness, (2) the ratio of exotic to native species, (3) the relative abundance of habitat generalists, and (4) community similarity among sites. We also compared how these rates of change varied over time. Over the past 50 years, native species density declined an average of 18.5% at the 20-m2 scale, whereas the ratio of exotic species to native species increased at 80% of all sites. Habitat generalists increased, and habitat specialists declined, accounting in part for an 8.7% rise in average similarity in species composition among sites. Most of these changes cannot be related to succession, habitat loss, or invasion by exotic species. Areas without deer hunting showed the greatest declines in native species density, with parks and research natural areas faring no better than unprotected stands. Animal-pollinated and animal-dispersed species also declined, particularly at unhunted sites. These results demonstrate the power of quantitative multistand data for assessing ecological change and identify overabundant deer as a key driver of community change. Because maintaining forest habitats alone fails to preserve plant diversity at local scales, local biotic simplification seems likely to continue in the region unless active efforts are taken to protect diversity.  相似文献   

16.
Changes in land-use patterns that alter habitat may have a delayed negative effect on animal species occupying that habitat, and thus such effects may not be recognized for years. In Water Canyon, located in the Magdalena Mountains of southcentral New Mexico, we studied a relatively stable population of the cooperatively breeding Acorn Woodpecker ( Melanerpes formicivorus ) from 1975 to 1984. These woodpeckers rely on self-constructed storage sites, or "granary trees," to hold the acorns used during the winter and spring. Most granaries were in dead trunks and limbs of the narrow-leafed cottonwood trees ( Populus angustifolia . Storage sites form the primary basis for differential quality among territories. Groups of woodpeckers with large storage facilities (high-quality territories) have greater annual reproductive success and survival than do pairs or groups with poorly developed storage sites. In the summers of 1994 and 1995 we censused the original study site, which had held 21 territories. Most territories that had contained birds a decade earlier were unoccupied. This drastic decline was correlated with the loss of nearly all large storage facilities because of the collapse of the granary trees. Most neighboring territories with lesser storage facilities also were vacant. The lack of production of new, high-quality granaries for the period 1975–1995 probably is due inpart to the age structure of the cottonwood trees, which is distinctly bimodal: nearly all trees are either very young or old. There are now fewer old, partly dead trees that could provide granary sites. The scarcity of middle-aged trees reflects a period of intensive cattle grazing in Water Canyon, during which time production of young cottonwoods was suppressed.  相似文献   

17.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

18.
Abstract:  Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges.  相似文献   

19.
Abstract:  Many riparian zones in the Sonoran Desert have been altered by elimination of the normal flood regime; such changes to the flow regime have contributed to the spread of saltcedar ( Tamarix ramosissma Ledeb.), an exotic, salt-tolerant shrub. It has been proposed that reestablishment of a natural flow regime on these rivers might permit passive restoration of native trees, without the need for aggressive saltcedar clearing programs. We tested this proposition in the Colorado River delta in Mexico, which has received a series of large-volume water releases from U.S. dams over the past 20 years. We mapped the vegetation of the delta riparian corridor through ground and aerial surveys (1999–2002) and satellite imagery (1992–2002) and related vegetation changes to river flood flows and fire events. Although saltcedar is still the dominant plant in the delta, native cottonwood (  Populus fremontii S. Wats.) and willow ( Salix gooddingii C. Ball) trees have regenerated multiple times because of frequent flood releases from U.S. dams since 1981. Tree populations are young and dynamic (ages 5–10 years). The primary cause of tree mortality between floods is fire. Biomass in the floodplain, as measured by the normalized difference vegetation index on satellite images, responds positively even to low-volume (but long-duration) flood events. Our results support the hypothesis that restoration of a pulse flood regime will regenerate native riparian vegetation despite the presence of a dominant invasive species, but fire management will be necessary to allow mature tree stands to develop.  相似文献   

20.
Abstract:  Ranches are being converted to exurban housing developments in the southwestern United States, with potentially significant but little-studied impacts on biological diversity. We captured rodents on 48 traplines in grasslands, mesquite savannas, and oak savannas in southeastern Arizona that were grazed by livestock, embedded in exurban housing developments, grazed and embedded in development, or neither grazed nor embedded in development. Independent of habitat or development, rodent species richness, mean rank abundance, and capture rates of all rodents combined were negatively related to presence of livestock grazing or to its effects on vegetative ground cover. Exurban development had no obvious effects on rodent variety or abundance. Results suggest southwestern exurban developments can sustain a rich assemblage of grassland and savanna rodents if housing densities are low and houses are embedded in a matrix of natural vegetation with little grazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号