首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C types recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

2.
The obligate symbiotic relationship between dinoflagellates, Symbiodinium spp. and reef building corals is re-established each host generation. The solitary coral Fungia scutaria Lamarck 1801 harbors a single algal strain, Symbiodinium ITS2 type C1f (homologous strain) during adulthood. Previous studies have shown that distinct algal ITS2 types in clade C correlate with F. scutariaSymbiodinium specificity during the onset of symbiosis in the larval stage. The present study examined the early specificity events in the onset of symbiosis between F. scutaria larvae and Symbiodinium spp., by looking at the temporal and spatial infection dynamics of larvae challenged with different symbiont types. The results show that specificity at the onset of symbiosis was mediated by recognition events during the initial symbiont—host physical contact before phagocytosis, and by subsequent cellular events after the symbionts were incorporated into host cells. Moreover, homologous and heterologous Symbiodinium sp. strains did not exhibit the same pattern of localization within larvae. When larvae were infected with homologous symbionts (C1f), ~70% of the total acquired algae were found in the equatorial area of the larvae, between the oral and aboral ends, 21 h after inoculation. In contrast, no spatial difference in algal localization was observed in larvae infected with heterologous symbionts. This result provides evidence of functional differences among gastrodermal cells, during development of the larvae. The cells in the larval equator function as nutritive phagocytes, and also appear to function as a region of enhanced symbiont acquisition in F. scutaria.  相似文献   

3.
Maristentor dinoferus n. gen, n. sp., was discovered on coral reefs on Guam in 1996 and has since been found frequently, at depths of 3-20 m. It forms black clusters, visible to the naked eye, especially on Padina spp. (Phaeophyta) and other light-colored backgrounds. When fully extended, this sessile ciliate is trumpet-shaped, up to 1 mm tall and 300 µm wide across the cap. The ciliate is host to 500-800 symbiotic algae. The anterior cap, or peristomial area, is divided into two conspicuous lobes by a deep ventral indentation. There is a single globular macronucleus, many micronuclei and, on average, 101 somatic ciliary rows and 397 adoral membranelles. M. dinoferus may be closely related to limnetic Stentor spp., but differs in two conspicuous features: (1) the cilia on the peristomial bottom are scattered (ordered rows in Stentor spp.) and (2) the paroral membrane is very short and opposite the buccal portion of the adoral zone of membranelles (in Stentor spp., it accompanies the entire membranellar zone). The cells appear dark due to stripes of cortical granules; the granules are more concentrated in a "black band" below the cap. The cortical pigment(s) is red fluorescent with a broad absorption peak in the blue (ca. 420-480 nm), and sharp peaks in the yellow-green (ca. 550 nm) and red (600 nm). Ultrastructural and molecular data demonstrate that the symbiont is a dinoflagellate of the genus Symbiodinium, the first unequivocal report of zooxanthellae in a ciliate. Phylogenetic analysis of a portion of the large subunit ribosomal RNA gene (28S rDNA) showed that the symbionts belong to Symbiodinium sp. clade C, a lineage that also inhabits many corals on Guam. The ciliate changes shape at night, and the symbionts, which are spread out in the cap during the day, are mostly withdrawn into the stalk at night; these changes were apparently not simply a response to darkness.  相似文献   

4.
This report documents the extent to which coral colonies show fluctuations in their associations with different endosymbiotic dinoflagellates. The genetic identity of Symbiodinium from six coral species [Acropora palmata (Lamarck), A. cervicornis (Lamarck), Siderastrea siderea (Ellis and Solander), Montastrea faveolata (Ellis and Solander), M. annularis (Ellis and Solander), and M. franksi (Gregory)] was examined seasonally over five years (1998 and 2000–2004) in the Bahamas and Florida Keys at shallow (1 to 4 m) fore-reef/patch reef sites and at deeper fore-reef (12–15 m) locations. Symbionts were identified genetically using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the internal transcribed spacer region 2 (ITS2) of ribosomal RNA gene loci. Repetitive sampling from most labeled colonies from the Bahamas and the Florida Keys showed little to no change in their dominant symbiont. In contrast, certain colonies of M. annularis and M. franksi from the Florida Keys exhibited shifts in their associations attributed to recovery from the stresses of the 1997–1998 El Niño southern oscillation (ENSO) event. Over several years, a putatively stress-tolerant clade D type of Symbiodinium was progressively replaced in these colonies by symbionts typically found in M. annularis and M. franksi in Florida and at other Caribbean locations. Greater environmental fluctuations in Florida may explain the observed changes among some of the symbioses. Furthermore, symbiotic associations were more heterogeneous at shallow sites, relative to deep sites. The exposure to greater environmental variability near the surface may explain the higher symbiont diversity found within and between host colonies.  相似文献   

5.
Little is known concerning the fine-scale diversity, population structure, and biogeography for Symbiodinium spp. populations inhabiting particular invertebrate species, including the gorgonian corals, which are prevalent members of reef communities in the Gulf of Mexico, the Caribbean, and the western Atlantic. This study examined the Symbiodinium sp. clade B symbionts hosted by the Caribbean gorgonian Pseudopterogorgia elisabethae (Bayer). A total of 575 colonies of P. elisabethae were sampled in 1995 and 1998–2000 from 12 populations lying along an ~450 km transect in the Bahamas and their Symbiodinium sp. clade B symbionts genotyped at two polymorphic dinucleotide microsatellite loci. Twenty-three unique, two-locus genotypes were identified in association with these P. elisabethae colonies. Most colonies hosted only a single Symbiodinium sp. clade B genotype; however, in some instances ( n=25), two genotypes were harbored simultaneously. For 10 of the 12 populations, 66–100% of the P. elisabethae colonies hosted the same symbiont genotype. Added to this, in 9 of the 12 populations, a Symbiodinium sp. clade B genotype was either unique to a population or found infrequently in other populations. This distribution of Symbiodinium sp. clade B genotypes resulted in statistically significant ( P<0.05 or <0.001) differentiation in 62 of 66 pairwise comparisons of P. elisabethae populations. Tests of linkage disequilibrium suggested that a combination of clonal propagation of the haploid phase and recombination is responsible for maintaining these distinct Symbiodinium sp. clade B populations.  相似文献   

6.
A new record of the genus Veneriserva Rossi, 1984 (Polychaeta: Dorvilleidae) is reported, as an endosymbiont in the coelom of the polychaete Laetmonice producta Grube, 1877 (Aphroditidae) in the eastern Weddell Sea and off King George Island (Southern Ocean, Antarctica). The specimens studied were very similar to Veneriserva pygoclava Rossi, 1984; however, due to the greater morphological variability and larger dimensions of our specimens, as well as different host species and geographic locations, a new sub-species, V. pygoclava meridionalis, was erected. A total of 842 specimens of L. producta were examined, 163 of which hosted 209 symbionts (183 in the Weddell Sea samples and 26 in the King George Island samples). Symbiont prevalence was higher in the Weddell Sea samples, and increased with depth (max. 51% at stn 14, 850 m depth). Symbiont intensity was equal to one for 78% and to two for 19.6% of all hosts examined; a maximum of six symbionts per single host was observed. Mean symbiont density was equal to 0.36 and 0.07 for the Weddell Sea and King George Island host populations, respectively. A weak linear relationship was found between symbiont and host size. Eight symbiont specimens (all found at a single station, 850 m depth) were bearing eggs, ranging between 10 and 200 µm in diameter, while 13 specimens were observed in regeneration of the posterior part, suggesting the occurrence of both sexual and asexual reproduction. The way of feeding is still not clear; reduction of the jaw apparatus suggests a parasitic host-symbiont relationship, however, no evident damage was observed in the tissues of the host. These results point out that occurrence of polychaete endoparasites in large aphroditids may be a more frequent and widespread phenomenon than previously believed, and that more attention should be paid to this aspect also in temperate and tropical aphroditid species.  相似文献   

7.
We developed quantitative PCR (qPCR) assays to distinguish each of the four clades (AD) of dinoflagellate endosymbionts (genus Symbiodinium) commonly found in Caribbean corals. We applied these primer sets, which target portions of the multi-copy ribosomal DNA (rDNA) gene family, to assess the presence/absence of symbionts in clade D (as indicated by the detection of clade D DNA). We detected these symbionts in five of six Caribbean host species/genera (21% of samples analyzed, N = 10 of 47 colonies), from which clade D had rarely or never been observed. This suggests that Symbiodinium in clade D are present in a higher diversity of coral species than previously thought. This qPCR-based approach can improve our understanding of the total microbial diversity associated with corals, particularly in hosts thought to be relatively specific, and has many other potential applications for studies of coral reef ecology and conservation.  相似文献   

8.
Epizoic worms were found to occur on certain coral colonies from reefs off the coast of Eilat (Red Sea). We identified 14 coral species infested by acoelomorph worms at a depth range of 2–50 m. The host corals were all zooxanthellate and included both massive and branching stony corals and a soft coral. Worms from all hosts were identified as belonging to the genus Waminoa and contained two distinct algal symbionts differing in size. The smaller one was identified as Symbiodinium sp. and the larger one is presumed to belong to the genus Amphidinium. Worm-infested colonies of the soft coral, Stereonephthya cundabiluensis, lacked a mucus layer and exhibited distinct cell microvilli, a phenotype not present in colonies lacking Waminoa sp. In most cases, both cnidarian and Acoelomorph hosts displayed high specificity for genetically distinctive Symbiodinium spp. These observations show that the epizoic worms do not acquire their symbionts from the “host” coral.  相似文献   

9.
The exchange of Symbiodinium symbionts among scleractinian and soritid hosts could facilitate acclimatization to changing conditions by establishing novel symbiotic unions better tuned to prevailing conditions. In this study, we compare the communities of Symbiodinium spp. in neighboring populations of Orbicella annularis and Sorites orbiculus from St. John, US Virgin Islands, using operational taxonomic unit (OTU) clustering of cloned internal transcribed spacer 2 (ITS-2) rDNA sequences. We tested for partitioning of Symbiodinium OTUs by host and depth within and between two sites to explore the potential for symbiont exchange between hosts and light-dependent microhabitat specialization. An apparent lack of overlap in Symbiodinium communities (13 OTUs representing 7 clades) hosted by O. annularis and S. orbiculus suggests that exchange among these hosts does not occur. A low number of novel clade G ITS-2 sequences were found in one O. annularis and one S. orbiculus. A phylogenetic analysis of these sequences revealed them to be sub-clade G2 Symbiodinium, which are most commonly hosted by excavating clionid sponges. A permutational MANOVA revealed within host differences in the partitioning of Symbiodinium OTUs by site but not depth. This finding highlights the potential roles of either dissimilar environmental conditions between sites, or at least partial separation between populations, in determining the types of Symbiodinium contained in different hosts on a spatial scale of a few kilometers.  相似文献   

10.
The photosynthetic capacity of photosystem II (PS II) in symbiotic dinoflagellates (Symbiodinium sp.), as measured by analysis of chlorophyll fluorescence, was investigated in the primary Caribbean reef-building corals, Montastraea annularis and Montastraea faveolata, for 5 years and Montastraea franksi over 2 years in the Bahamas. Significant seasonal fluctuations in the quantum yield of charge separation (Fv/Fm) of PS II were found in all species at all depths, with the highest photosynthetic capacity consistently recorded between mid-winter and early spring and the lowest photosynthetic capacity occurring in the mid to late summer. Corals residing in shallow depths of 1-2 m showed the greatest fluctuations in Fv/Fm, whereas deeper corals (3-4 and 14 m depths) had consistently higher values of Fv/Fm. Densities of symbiotic dinoflagellates and photosynthetic pigments followed a similar pattern. Fluctuations of photosynthetic capacity showed a strong correlation with seasonal patterns of water temperature and light. Such seasonal shifts in photosynthetic capacity are most likely due to several biochemical processes in the algae that lead to alterations of both photoprotection and photodamage. While symbiont density changed significantly on a seasonal basis, visual signs of coral bleaching were noted only in the fall of 1995 and the spring and summer of 1998. Comparisons of photosynthetic capacity and the decrease in the number of symbionts and their subsequent recovery indicated that symbiont populations in this study had the ability to recover quickly following bleaching events, as long as continued physical perturbation (e.g. thermal stress) did not shorten the recovery phase. Large-scale bleaching events are best viewed as the end points of seasonal physiological variation in which photosynthetic capacity and density of symbiotic dinoflagellates are reduced to a lower level than during "non-bleaching" years.  相似文献   

11.
Symbioses between dinoflagellates in the genus Symbiodinium (commonly referred to as zooxanthellae) and scleractinian corals are an essential feature for the maintenance of coral reefs. The fine-scale diversity and population structure of the zooxanthellae inhabiting the coral Pocillopora meandrina, a major reef building species in Polynesia, was examined. We used two polymorphic microsatellites to study seven populations from the South Pacific, whose host structuring has been previously investigated. The symbionts of P. meandrina showed high levels of diversity, with more than one zooxanthella genotype being identified in most of the host individuals. Genetic differentiation between symbiont populations was detected at a large scale (2,000 km) between the Tonga and the Society Archipelagos. Within the Society Archipelago, the two most remote populations (Tahiti and Bora-Bora; 200 km apart) were only weakly differentiated from each other. Statistical tests demonstrated that the symbiont genetic structure was not correlated with that of its host, suggesting that dispersal of the symbionts, whether they are transported within a host larva or free in the water, depends mainly on distance and water currents. In addition, the data suggests that hosts may acquire new symbionts after maternal transmission, possibly following a disturbance event. Lastly, the weak differentiation between symbiont populations of P. verrucosa and P. meandrina, both from Moorea, indicated that there was some host-symbiont fine-scale specificity detectable at the genetic resolution offered by microsatellites.  相似文献   

12.
We measured the relationship between symbiont diversity, nutritional potential, and symbiotic success in the cnidarian–dinoflagellate symbiosis, by infecting aposymbiotic (i.e. symbiont-free) specimens of the model sea anemone Aiptasia sp. with a range of Symbiodinium types. Four cultured heterologous Symbiodinium types (i.e. originally isolated from other host species) were used, plus both cultured and freshly isolated homologous zooxanthellae (i.e. from Aiptasia sp.). Rates of photosynthesis, respiration, and symbiont growth were measured during symbiosis establishment and used to estimate the contribution of the zooxanthellae to the animal’s respiratory carbon demands (CZAR). Anemones containing Symbiodinium B1 (both homologous and heterologous) tended to attain higher CZAR values and hence benefit most from their symbiotic partners. This was despite Symbiodinium B1 not achieving the highest cell densities, though it did grow more quickly during the earliest stages of the infection process. Rather, the heterologous Symbiodinium types A1.4, E2, and F5.1 attained the highest densities, with populations of E2 and F5.1 also exhibiting the highest photosynthetic rates. This apparent success was countered, however, by very high rates of symbiosis respiration that ultimately resulted in lower CZAR values. This study highlights the impact of symbiont type on the functionality and autotrophic potential of the symbiosis. Most interestingly, it suggests that certain heterologous symbionts may behave opportunistically, proliferating rapidly but in a manner that is energetically costly to the host. Such negative host–symbiont interactions may contribute to the host–symbiont specificity seen in cnidarian–dinoflagellate symbioses and potentially limit the potential for partner switching as an adaptive mechanism.  相似文献   

13.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

14.
Mutualistic associations between different organisms are theoretically expected when the interests of independently reproducing units are aligned to form a single reproductive unit. This alignment does not come about easily, because models show that hosts and symbionts can be in conflict over the transmission of symbionts. Selection will favour hosts that are able to limit genetic variation of symbionts, for example by enforcing uniparental vertical transmission, while symbionts will be selected to disperse independently of the host. A crucial factor determining the evolution and elaboration of symbiotic relationships is therefore who controls the transmission of symbionts. In the fungus-growing termites (Macrotermintinae) horizontal transmission seems to be the rule as the termites normally acquire their cultivated fungus (Termitomyces) from the environment. In spite of this general pattern, uniparental, vertical transmission has evolved in two unrelated Macrotermitinae genera, where only one sex of the two primary reproductives carries asexual spores from the fungal comb of its parent colony to inoculate the new fungus comb. Remarkably, symbiont transmission is exclusively paternal in Macrotermes bellicosus, whereas symbionts are maternally inherited in all Microtermes species studied so far. Thus, in Macrotermitinae horizontal transmission is the ancestral state with two independent origins to uniparental, vertical transmission. This is in contrast to fungus-growing ants where uniparental, vertical transmission is the rule. Causes and consequences of this difference are further discussed. Despite this fundamental difference both groups evolved a similar symbiosis that is probably the key for their ecological success: the fungus-growing ants in the neotropics and the fungus-growing termites in the paleotropics.  相似文献   

15.
Considerable variability in bleaching was observed within and among soft coral taxa in the order Alcyonacea (Octocorallia: Cnidaria) on the central Great Barrier Reef (GBR, latitude 18.2°–19.0°S, longitude 146.4°–147.3°E) during the 1998 mass coral bleaching event. In April 1998, during a period of high sea surface temperatures, tissue samples were taken from bleached and unbleached colonies representative of 17 soft coral genera. The genetic identities of intracellular dinoflagellates (Symbiodinium spp.) in these samples were analyzed using PCR-denaturing gradient gel electrophoresis fingerprinting analysis of the internal transcribed spacer regions 1 and 2. Alcyonaceans from the GBR exhibited a high level of symbiont specificity for Symbiodinium types mostly in clade C. A rare clade D type (D3) was associated only with Clavularia koellikeri, while Nephthea sp. hosted symbionts in clade B (B1n and B36). Homogenous Symbiodinium clade populations were detected in all but one colony. Colonies that appeared bleached possessed symbiont types that were genetically indistinguishable from those in nonbleached conspecifics. These data suggest that parameters other than the resident endosymbionts such as host identity and colony acclimatization are important in determining bleaching susceptibility among soft corals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Previous molecular phylogenetic analyses have shown that five tropical lucinid species living in or near Thalassia testudinum seagrass beds are colonized by the same bacterial symbiont species. In addition, a new lucinid species belonging to the genus Anodontia, which inhabits reducing sediment found near seagrass beds and in mangrove swamps, has been included in the present study. Endosymbiosis in Anodontia alba was examined according to symbiont phylogenetic and gill ultrastructural analysis. Phylogenetic analysis showed that partial 16S rDNA sequences of A. alba- and Codakia orbicularis-symbionts were 100% identical at all nucleotide positions determined, suggesting that A. alba also harbors the same symbiont species as C. orbicularis (and, consequently, as C. orbiculata, C. pectinella, Linga pensylvanica and Divaricella quadrisulcata). Based on light and electron microscopy, the cellular organization of the gill filament appeared similar to those already described in other lucinids. The most distinctive feature is the lack of "granule cells" in the lateral zone of A. alba gill filaments. In order to confirm the single-species hypothesis, purified fractions of gill bacterial symbionts obtained from the gills of each of the six tropical lucinids cited above were used to infect aposymbiotic juveniles of C. orbicularis. In each case, aposymbiotic juvenile batches were successfully infected by the gill-endosymbiont fractions, whereas, during the experiments, juveniles from the negative control were still uninfected. These experimental data confirm the phylogenetic data and also demonstrate that chemoautotrophic bacterial endosymbionts from their host cells can colonize aposymbiotic juveniles. The conclusion also follows that intracellular gill-endosymbionts still have the capacity to recognize and colonize new host generations. Lucinids provide a unique model for the study of sulfide-oxidizing symbiosis, even if symbionts remain unculturable.  相似文献   

18.
Whilst many studies of symbiotic dinoflagellate diversity have focused on tropical reef environments, only a few have explored the degree and pattern of divergence of these endosymbionts at high latitudes. In this study, the genetic diversity and specificity of symbiotic dinoflagellates associated with two common anthozoan hosts in the north-western Pacific Ocean was studied in four different seasons during a period of 1 year. Partial nucleotide sequences of 28S and complete ITS1 ribosomal DNA regions were used to identify, genetically, the endosymbionts extracted from the scleractinian Alveopora japonica and the actinarian Heteractis sp. A. japonica harbours symbionts belonging to Symbiodinium of clade F, while Heteractis sp. associates with Symbiodinium of clade C. Moreover, no seasonal changes in the endosymbiont community were detected in these two associations during this study. This is the first evidence that these two temperate cnidarian–microalgae symbioses are stable. Furthermore, we tested the apparent specificity of the Heteractis sp.– Symbiodinium sp. clade C association, by performing alga-infection experiments with aposymbiotic hosts, and monitoring the uptake and persistence of homologous and heterologous symbionts. The findings confirm the association patterns detected in the field and show that Heteractis sp. only establishes a successful association with Symbiodinium cells of clade C, at least among the heterologous symbionts occurring in the study area. Our results are consistent with the idea that selective pressures in highly fluctuating temperate environments might have granted symbiosis-specificity an adaptive value.Communicated by T. Ikeda, Hakodate  相似文献   

19.
W. Fitt  C. Cook 《Marine Biology》2001,139(3):507-517
The availability of solid food (Artemia nauplii) and dissolved inorganic nutrients (ammonium, nitrate, phosphate) to the shallow-water marine hydroid Myrionema amboinense was manipulated for 1-8 days in order to investigate their role in the growth of intracellular symbiotic dinoflagellates (zooxanthellae) of the genus Symbiodinium. Symbionts from hydroids collected from the field or maintained under laboratory conditions (25°C, 12 h:12 h light:dark cycle, 80 µE m-2 s-1 fluorescent lighting) always exhibited a single peak in mitotic index (MI) at dawn. Symbionts in freshly collected field animals had an MI peak of about 15%. Symbiotic dinoflagellates in hydroids fed Artemia nauplii twice daily in the laboratory maintained this dawn peak of MI between 10% and 15%, but in the absence of feeding or added inorganic nutrients, this peak declined to less than 1% within 2-4 days. In contrast, when hydroids were placed in solutions containing ammonium (20 µM NH4Cl), nitrate (10 µM NaNO3), and a combination of ammonium and phosphate (2 µM Na2HPO4) immediately after collection, the algal MI remained between 5% and 15% for 4-7 days; the addition of 2 µM phosphate did not increase MI relative to unfed rates. When unfed animals were placed in dissolved nitrogen or fed Artemia, the symbiont MI increased from <1% to 10-17% within 2-3 days; P alone had no effect. However, the increase resulting from added inorganic nutrients was temporary, lasting only 5-7 days. These observations suggest that algal division in the host is maintained indefinitely in the field or by feeding particulate foods twice daily in the laboratory, but the addition of inorganic nutrients alone (ammonium, nitrate and ammonium/phosphate) appeared to support the completion of a maximum of one additional round of cell division. Nutrients required for continued growth and division of symbiotic dinoflagellates are linked to host feeding and host growth; without external food, neither host nor symbiont continue to grow. The same phenomenon is seen in zooxanthellate anemones, clams and corals, where total numbers of symbionts appear to be linked to changes in host-tissue biomass (protein), achieving relatively stable densities in M. amboinense, corals and other cnidarian symbioses, depending on their local environmental conditions. The results of the present study help explain the cellular responses of algal symbionts in reef-dwelling invertebrates to additions of dissolved inorganic nutrients to coral-reef ecosystems.  相似文献   

20.
This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号