首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
Sea urchins are a key group of herbivores in both temperate and tropical food webs because they control macroalgal cover, and consequently influence primary productivity and phase shifts on reefs. Despite being abundant on southwestern Atlantic reefs, sea urchin distributions, and their association with abiotic and biotic variables, are poorly known. In this study, sea urchin assemblages were surveyed in 2011 at multiple depths at eight sites in Arraial do Cabo (Brazil, 22°57′S/41°01′W), with sites split between a colder, more wave-exposed location, and a warmer, more sheltered location. The influence of this large-scale physical gradient, along with changes in depth and substrate complexity, on sea urchin densities was then investigated. Predator biomass was low and did not vary significantly among sites. Among the seven species recorded, Paracentrotus gaimardi, Echinometra lucunter and Arbacia lixula were dominant. Linear mixed-effects models indicated that location was important, with mid-sized P. gaimardi individuals and A. lixula more common at cooler, exposed sites and E. lucunter more abundant at warmer, sheltered sites. Sea urchin densities typically decreased with increasing depth, probably caused by changes in factors such as light, wave exposure, and sedimentation. Substrate complexity had a positive effect on the abundance of all species, presumably because of the increased availability of refuges. Physical gradients have important consequences for urchin distributions and their ecological functions at relatively small spatial scales on these reefs, and should be incorporated into herbivore monitoring programmes. Research is also required to examine how differential sea urchin distributions affect benthic dynamics.  相似文献   

2.
It has been hypothesized that herbivorous fishes and the regular echinoidDiadema antillarum Philippi compete for benthic algae as their major food resource. Mass mortality ofD. antillarum in February 1984 provided the opportunity to test the hypothesis that herbivorous fishes and sea urchins were competing previously. Visual censuses of herbivorous fishes conducted over 4 yr in four reef zones on Tague Bay Reef, St. Croix, U.S. Virgin Islands, before and after the mass mortality indicated that population densities increased approximately three-fold in backreef and shallow (2m) forereef zones and two-fold, and four-fold in mid (5m) and deep (10m) forereef zones, respectively. Juvenile parrotfishes constituted the major component of these increases, except in the shallow forereef where acanthurids became most abundant. Grazing intensity by herbivorous fishes increased in three of the four reef zones immediately following the mass mortality. These data support the hypothesis that exploitative competition for algal resources was occurring prior to the sea urchin mass-mortality, although alternative hypotheses cannot be discounted completely. Despite the increases in the abundances of, and grazing by, herbivorous fishes, the algal community continued to increase in percent cover and biomass, indicating that increased grazing by fishes does not compensate for the loss of grazing byD. antillarum in controlling algal abundance and community structure.  相似文献   

3.
The morphometry of the sea urchin Evechinus chloroticus from habitats of contrasting algal abundance but of similar urchin density was examined at two localities in southern New Zealand during 1993. Populations from habitats of high algal abundance (Dusky Sound) had similar relationships of demipyramid (jaws) to test diameter, but individuals had significantly smaller jaws relative to their test diameter than those from a locality where algal abundance was low (Arapawa Island). The body wall mass (in relation to total wet weight) was similar for populations from both localities but, for Dusky Sound populations, individuals from exposed sites had greater relative body mass than those from sheltered sites. The ratios of gonad weight:total weight were similar between localities. However, E. chloroticus from Arapawa Island reached reproductive maturity at a smaller size than those from Dusky Sound. Growth rates of E. chloroticus varied among localities in Dusky Sound. Growth was modelled by the Tanaka function, which allows for rapid early growth until reproductive maturity is reached and declining growth rates thereafter. The results show that sea urchins respond to low resource availability by increasing the size of the food-gathering apparatus, maturing at a smaller size, and growing to a smaller size than individuals from food-rich habitats. Received: 3 December 1996 / Accepted: 29 January 1997  相似文献   

4.
P. Baelde 《Marine Biology》1990,105(1):163-173
The structures of fish assemblages in twoThalassia testudinum beds in Guadeloupe, French West Indies, one adjacent to mangroves and the other adjacent to coral reefs, were compared between January 1983 and May 1984. The aim of the study was to compare the influences of mangroves and coral reefs on the utilization of seagrass beds by fishes through examination of species composition, catch rate, size of fishes and temporal changes. The two fish assemblages were similar in terms of the number of species they had in common (nearly 44% of the total number of species collected) and the great abundance of juveniles. They both comprised species that usually inhabit other habitats, i.e., estuaries, open waters or coral reefs. Estuary-associated species (e.g. Gerreidae) were the most abundant species in the seagrass bed near the mangroves, while small pelagic species (e.g. Clupeidae) were the most abundant species in the seagrass bed near the coral reefs. The seagrass bed near the mangroves was preferentially utilized as a nursery area by small juveniles of various species (e.g. Clupeidae, Sparidae, Gerreidae, and at least one coral reef species,Ocyurus chrysurus). The abundance of these species varied frequently, suggesting successive arrivals and departures of juveniles over time. The seagrass bed near the coral reefs was characteristically utilized by fishes that are more able to avoid predation, i.e., fishes that forage over seagrass beds at night and shelter in or near the coral reefs during the day (large juveniles of coral reef species and adults of schooling pelagic species, respectively). The constant migrations of these fishes between the coral reefs and seagrass beds explained the relative stability of the structure of the fish assemblage in the seagrass bed over time. Thus, the two seagrass beds were not equivalent habitats for fishes. The distinct ecological influences of the mangroves (as a nursery for small juveniles) and coral reefs (as a shelter for larger fishes) on the nearby seagrass beds was clearly reflected by the distinct utilizations of these seagrass beds by fishes.  相似文献   

5.
Large populations of sea urchins, Strongylocentrotus droebachiensis (Müller), destroyed kelp beds along the Atlantic coast of Nova Scotia in the 1960's and 1970's. The origin of these large sea urchin populations is not understood. We have investigated the potential influence of variable growth and development of the planktonic larvae of sea urchins (in response to temperature and food abundance) on recruitment of benthic juveniles. The adult sea urchins were collected at Sandy Cove, Digby County, Nova Scotia, Canada, in December 1986. Temperature strongly affected larval size and the growth of the echinus rudiment within the range 3° to 9°C, and larvae grew most rapidly at 14°C. Food abundance had a smaller effect on larval growth, and these effects were apparent only at high temperature. Larvae fed the same concentration of two different algal food species grew and developed similarly. Correspondence between spring temperature variation and qualitative variation in sea urchin recruitment, as well as strong temperature effects on larval growth in culture, and the occurrence of a large, positive temperature anomaly in June 1960, all suggest that temperature effects on larval growth and development may have led to intense sea urchin recruitment in 1960 and the appearance of large adult populations 4 to 6 yr later. This result invites further research.  相似文献   

6.
Summary. A diverse group of brown seaweeds produce bouquets of C11 metabolites, some of which act as pheromones that cue gamete release or attract sperm to eggs following release. We demonstrate that these C11 metabolites and their degradation products also frequently and strongly deter feeding by the herbivorous amphipod Ampithoe longimana, but rarely by the herbivorous sea urchin Arbacia punctulata. Across the range of concentrations tested, seven of twelve C11 metabolites or mixtures that we tested deterred feeding by the amphipod, but only two of eleven deterred the sea urchin. For those compounds where we could rigorously contrast the magnitude of deterrence against the amphipod with the magnitude of deterrence against the urchin, the amphipod was deterred significantly more than the urchin by five of six metabolites. Thus, C11 compounds were more frequently and more strongly deterrent to the amphipod than to the sea urchin. These findings for C11 metabolites conflict with previous investigations, where other classes of seaweed chemical defenses have been shown to deter feeding by large mobile herbivores like urchins and fishes but to be relatively ineffective against mesograzers, especially the species of amphipod that we used here. Our results suggest that C11 metabolites are unusual among the known seaweed chemical defenses in that they are especially effective against mesograzers, which often consume seaweed spores, zygotes, and juveniles. The high concentrations of C11 metabolites in brown algal eggs could allow these defenses to be especially important in defending gametes, zygotes, or young sporelings from herbivorous mesograzers. Received 26 February 1998; accepted 9 April 1998.  相似文献   

7.
The spatial, diel and tidal variability in the abundance of piscivorous fishes and their teleost prey, and the dietary composition of predatory fishes were investigated in beds of Heterozostera tasmanica within Port Phillip Bay, Australia, from September 1997 to February 1998. Predatory and prey fish assemblages were sampled from beds of H. tasmanica at three locations during each combination of diel (day and night) and tidal (high and low) cycles. Pelagic and benthic crustaceans represented >60% by abundance of the diets of all predatory fishes. Seven species, 54% of all predatory fishes, were piscivorous. These piscivores consumed individuals from seven families, 36.8% of the fish families being associated with seagrass. Western Australian salmon, Arripis truttacea (Arripidae) (n = 174) and yank flathead, Platycephalus speculator (Platycephalidae) (n = 46) were the most abundant piscivores. A. truttacea consumed larval/post-larval atherinids, gobiids and sillaginids. P. speculator consumed late-juvenile/adult atherinids, clinids and gobiids. While the abundances of piscivores varied between locations (P < 0.001) and diel periods (P = 0.028), the relative differences in piscivore abundance between sites and diel periods were not consistent between tides. The abundances of A. truttacea varied in a complex way amongst sites, diel period and tidal cycle, as shown by a three-way interaction between these factors (P = 0.026). Only during diurnal periods at St. Leonards was the abundance of A. truttacea significantly higher during high than low tides (P < 0.001). During the other diel periods at each site, the abundance of A. truttacea did not vary. P. speculator was significantly more abundant nocturnally (P = 0.017). The abundance of small (prey) fishes varied significantly amongst sites (P < 0.001). During the day, the abundance of small fishes did not vary between high and low tides (P = 0.185), but their nocturnal abundance was greater during low tide (P < 0.001). Atherinids (n = 1732) and sillaginids (n = 1623) were the most abundant families of small fishes. Atherinids were significantly more abundant nocturnally (P = 0.005) and during low tides (P = 0.029), and varied significantly amongst sites (P < 0.001). Sillaginids varied significantly only amongst sites (P < 0.001). Seagrass beds provide a foraging habitat for a diverse assemblage of predatory fishes, many of which are piscivorous. Anti-predator behaviour and amongst-location variability in abundances of piscivorous fishes may explain some of the diel and tidal, and broad-scale spatial patterns in small-fish abundances. Received: 23 July 1999 / Accepted: 18 January 2000  相似文献   

8.
In the Aleutian Archipelago, two distinct organizational states of kelp forest communities exist, foliose algal assemblages and deforested barren areas. The canopy-forming kelp Eualaria fistulosa can be found in both states, although it is much less abundant in the deforested state. In contrast, sea urchins also occur in both states, but they are considerably more abundant in the deforested state. This study determined whether the protective phlorotannin content in E. fistulosa sporophylls that originated in foliose algal assemblages would differ from those that originated in deforested areas. We also examined sea urchin grazing rates on these sporophylls to determine whether there were any differences in grazing rates related to the origin of the sporophylls. Next, we determined whether taxon richness and abundance of E. fistulosa holdfast communities would differ depending on the origin of the holdfast. Our results showed that sporophylls that were collected in barren areas generally had higher phlorotannin content than sporophylls found in foliose algal assemblages, although phlorotannin content varied across the study area. Grazing rates on sporophyll tissue and holdfast community structure did not differ between foliose algal assemblages and barren areas. These results show that phlorotannin content is greatest in areas under high grazing pressure and that phlorotannins may possibly protect E. fistulosa and the holdfast communities from being grazed in barren areas.  相似文献   

9.
Increasing concerns about the ecological impacts of ongoing and possibly worsening blooms of the toxic, carcinogenic cyanobacteria Lyngbya majuscula in Moreton Bay, Australia, led us to assess differences in meiofaunal prey assemblages between bloom and non-bloom substrates and the potential dietary impacts of dense L. majuscula blooms on the omnivorous benthivore, the Eastern Long-finned Goby, Favonigobius lentiginosus and the obligate meiobenthivorous juveniles of Trumpeter Whiting, Sillago maculata. Marked differences in invertebrate communities were found between sandy and L. majuscula bloom foraging substrates, with copepods significantly more abundant (18.49% vs. 70.44% numerical abundance) and nematodes significantly less abundant (55.91% vs. 1.21% numerical abundance) within bloom material. Gut analyses showed that bentho-planktivorous fishes exposed to L. majuscula in captivity had consumed a significantly greater quantity of prey by both total number (P < 0.0019) and volume (P < 0.0006) than fish exposed to sand treatments. Thus, it is likely for such fishes that L. majuscula blooms increase rates of prey encounter and consumption, with consequent changes in trophic relationships through shifts in predator–prey interactions between small benthivorous fishes and their meiofaunal prey.  相似文献   

10.
O'Leary JK  McClanahan TR 《Ecology》2010,91(12):3584-3597
Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Ni?o Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.  相似文献   

11.
Gut analyses of the green sea urchin Strongylocentrotus droebachiensis (O. F. Müller) demonstrated that perennial phaeophytes, mostly fucoids and Alaria esculenta, were predominant in the diet. Ephemeral species, coralline algae and animals, were consumed in smaller amounts when available. Grazing by the urchins is evidently responsible for the dearth of non-coralline sublittoral algae in Newfoundland waters. Lobsters, rock crabs, purple sea stars, other urchins, and a variety of fishes and birds feed on S. droebachiensis, but predation is apparently not effective in limiting the abundance of the urchin.Studies in Biology from the Memorial University of Newfoundland No. 234.Contribution from the Marine Sciences Research Laboratory No. 66.  相似文献   

12.
Effects of Artisanal Fishing on Caribbean Coral Reefs   总被引:6,自引:0,他引:6  
Abstract:  Although the impacts of industrial fishing are widely recognized, marine ecosystems are generally considered less threatened by artisanal fisheries. To determine how coral reef fish assemblages and benthic communities are affected by artisanal fishing, we studied six Caribbean islands on which fishing pressure ranged from virtually none in Bonaire, increasing through Saba, Puerto Rico, St Lucia, and Dominica, and reaching very high intensities in Jamaica. Using stationary-point fish counts at 5 m and 15 m depth, we counted and estimated the lengths of all noncryptic, diurnal fish species within replicate 10-m-diameter areas. We estimated percent cover of coral and algae and determined reef structural complexity. From fish numbers and lengths we calculated mean fish biomass per count for the five most commercially important families. Groupers (Serranidae), snappers (Lutjanidae), parrotfish (Scaridae), and surgeonfish (Acanthuridae) showed order-of-magnitude differences in biomass among islands. Biomass fell as fishing pressure increased. Only grunts (Haemulidae) did not follow this pattern. Within families, larger-bodied species decreased as fishing intensified. Coral cover and structural complexity were highest on little-fished islands and lowest on those most fished. By contrast, algal cover was an order of magnitude higher in Jamaica than in Bonaire. These results suggest that following the Caribbean-wide mass mortality of herbivorous sea urchins in 1983–1984 and consequent declines in grazing pressure on reefs, herbivorous fishes have not controlled algae overgrowing corals in heavily fished areas but have restricted growth in lightly fished areas. In summary, differences among islands in the structure of fish and benthic assemblages suggest that intensive artisanal fishing has transformed Caribbean reefs.  相似文献   

13.
Morpho-functional features potentially involved in defence mechanisms against fish predators (i.e. attachment tenacity, spine length, and test robustness and thickness) have been assessed in two Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula. All four morpho-functional features were significantly and positively related to individual size for both species of sea urchins. Test robustness (i.e. static load needed to break sea urchin tests) was significantly greater for A. lixula (from 3,450 to 15,000 g depending on size) than for P. lividus (1,180–11,180 g). Attachment tenacity (i.e. force needed to dislodge sea urchins from the rocky substrate) was greater in A. lixula (280–3,300 g) than in P. lividus (110–1,450 g), and the difference tended to decrease in relation to smaller sea urchin size. Spine length was greater in A. lixula (1.5–2.9 cm) than in P. lividus (0.5–2.3 cm), but the difference decreased for larger sea urchin size. Test thickness was slightly greater (but not significantly) in A. lixula (0.35–1.10 mm) than in P. lividus (0.12–0.90 mm). These results provide evidence that morpho-functional features of sea urchins could be involved in affecting predation rates by fishes upon P. lividus and A. lixula, with potential implications for the population structure and distribution patterns of the two sea urchins in shallow rocky reefs.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

14.
Grazing sea urchins can reduce kelp abundance and therefore strongly affect kelp forest community structure. Despite the ecological importance of sea urchins, direct field studies on the role that urchin predators play in shaping urchin populations are rare for southern California. We conducted surveys and manipulative experiments within kelp forests near San Diego, CA, (32–51′28″N, 117–16′00″W) from 2006 to 2009 to determine whether predators such as sheephead (Semicossyphus pulcher) and spiny lobsters (Panulirus interruptus) may be linked to purple urchin (Strongylocentrotus purpuratus) and red urchin (Strongylocentrotus franciscanus) distribution and habitat use, as well as purple urchin density-dependent mortality. Purple urchins were less dense and more cryptic inside a local marine protected area (MPA) that contained high predator abundance than in nearby heavily fished areas, whereas red urchins rarely were found outside the MPA. Urchin proportional mortality was inversely density dependent during the day when sheephead were active, despite fish aggregations in plots of high urchin density, but was density independent during the night when lobsters were active. Urchin mortality was reduced under understory algal cover during the day, but not during the night. Examining whether urchin mortality from predation is density dependent and how habitat complexity influences this relationship is imperative because behavioral changes and increases in urchin populations can have vast ecological and economic consequences in kelp forest communities.  相似文献   

15.
Sympatric sea urchin species are usually considered to belong to the same grazer guild. Nevertheless, their role in community dynamics may vary due to species-specific morphological traits, feeding preferences and foraging behavior. In the Mediterranean Sea, the two species Paracentrotus lividus and Arbacia lixula co-occur in barren areas. Whereas P. lividus is usually considered responsible for creating a barren ground, the roles of the two sea urchin species in its maintenance are currently unclear. The relative and combined effects of P. lividus and A. lixula on maintaining the benthic community in the barren state were tested experimentally, using orthogonal exclusion of the two species. Results show that exclusion of A. lixula, regardless of the presence of P. lividus, led to a significant decrease in the surface of bare rock and a significant change of the algal assemblages, thus demonstrating the major role of this species in maintaining the barren state.  相似文献   

16.
Indirect Benefits of Marine Protected Areas for Juvenile Abalone   总被引:1,自引:0,他引:1  
Abstract: Marine protected areas ( MPAs) designed to provide harvest refugia for red sea urchins (  Strongylocentrotus franciscanus ) offer a unique opportunity to study the indirect effects of urchin fishing on subtidal communities. Sea urchins may provide important cryptic microhabitat for juvenile abalone sheltering beneath urchin spines in shallow habitats worldwide. We investigated the abundance of juvenile (3–90 mm) red abalone, (    Haliotis rufescens ) and the rare flat ( <90 mm) abalone (   H. walallensis ) on protected and fished rocky reefs in California. Abalone abundance surveys were conducted inside 24 × 30 m plots on three protected reefs with red sea urchins present and three fished reefs where red sea urchins were removed by commercial or experimental fishing. Significantly more juvenile abalone were found in 1996 and 1997 on protected reefs with urchins present than on fished reefs ( χ   2 = 188, df = 1, p < 0.001 ). Juvenile red abalone abundance was not correlated with local adult red abalone abundance or habitat rugosity. One-third of the juveniles inside the MPAs were found under the urchins' spine canopy, as were a suite of unfished marine organisms. In the laboratory, juvenile abalone survived better (  χ   2 = 7.31, df = 1, p < 0.01) in crab predation experiments in which red sea urchins were available as shelter. Fishing red urchins reduced structural complexity, potentially decreasing microhabitat available for juvenile abalone. This example demonstrates how MPAs designed for one fished species may help other species, illustrating their usefulness for ecosystem-based fishery management and marine conservation.  相似文献   

17.
Spatial closures in the marine environment are widely accepted as effective conservation and fisheries management tools. Given increasing human-derived stressors acting on marine ecosystems, the need for such effective action is urgently clear. Here we explore mechanisms underlying the utility of marine reserves to reinstate trophic dynamics and to increase resilience of kelp beds against climate-driven phase shift to sea urchin barrens on the rapidly warming Tasmanian east coast. Tethering and tagging experiments were used to examine size- and shelter-specific survival of the range-extending sea urchin Centrostephanus rodgersii (Diadematidae) translocated to reefs inside and outside no-take Tasmanian marine reserves. Results show that survival rates of C. rodgersii exposed on flat reef substratum by tethering were approximately seven times (small urchins 10.1 times; large urchins 6.1 times) lower on protected reef within marine reserve boundaries (high abundance of large predatory-capable lobsters) compared to fished reef (large predatory lobsters absent). When able to seek crevice shelter, tag-resighting models estimated that mortality rates of C. rodgersii were lower overall but remained 3.3 times (small urchins 2.1 times; large urchins 6.4 times) higher in the presence of large lobsters inside marine reserves, with higher survival of small urchins owing to greater access to crevices relative to large urchins. Indeed, shelter was 6.3 times and 3.1 times more important to survival of small and large urchins, respectively, on reserved relative to fished reef. Experimental results corroborate with surveys throughout the range extension region, showing greater occurrence of overgrazing on high-relief rocky habitats where shelter for C. rodgersii is readily available. This shows that ecosystem impacts mediated by range extension of such habitat-modifying organisms will be heterogeneous in space, and that marine systems with a more natural complement of large and thus functional predators, as achievable within no-take reserves, will minimize local risk of phase shifts by reinstating size and habitat-specific predator-prey dynamics eroded by fishing. Importantly, our findings also highlight the crucial need to account for the influence of size dynamics and habitat complexity on rates of key predator-prey interactions when managing expectations of ecosystem-level responses within marine reserve boundaries.  相似文献   

18.
Habitat shifts play an important role in structuring faunal assemblages; however, research has focused on the influence of random disturbance events and information on how regular seasonal changes to habitat affect marine fauna remains largely unexplored, especially in the tropics. We recorded seasonal changes in the structure of tropical macroalgae fields within the Ningaloo lagoon (Western Australia) and related this to the density, biomass and species richness of fishes that represent key processes: juveniles, predators of juveniles and herbivores. The extent and direction of seasonal changes in macroalgae were inconsistent among sites, creating a highly dynamic habitat matrix across time and space. Species richness and density of fishes were largely maintained where density of holdfasts from canopy-forming macroalgae and/or cover was high across seasons, but shifted markedly in areas of macroalgae habitat loss: suggesting stable habitat structure is critical for the persistence of macroalgae-associated fishes. Our results demonstrate that macroalgae fields that maintain high structural complexity across different seasons are more likely to preserve key ecological processes and therefore warrant greater conservation attention within a spatial management framework.  相似文献   

19.
We surveyed patterns in the relative abundance and size structure of the sea stars Pisaster ochraceus and Evasterias troschelii in five habitat types of varying structural complexity and prey availability (sand/cobble, boulder, and rocky intertidal; pilings; and floating docks) in Puget Sound and the San Juan Islands, Washington. For both species, small sea stars were most abundant in the most structurally complex habitat type (boulder), where they occurred almost exclusively under boulders during low tide. Larger individuals became more abundant as structural complexity decreased, occurring more frequently in open habitat types (rocky shores, pilings, and docks) known to have greater abundances of prey resources. Gull foraging observations and experiments demonstrated that exposed small sea stars of both species were highly vulnerable to predation, suggesting that small sea stars require structural complexity (crevice microhabitat) as a predation refuge. Large sea stars, once attaining a size refuge from predation, appear to migrate to more exposed habitat types with more abundant food resources. These results suggest parallel ontogenetic habitat shifts in two co-occurring consumer species related to a shared predation risk at early life stages and demonstrate how the relative importance of top-down and bottom-up processes may differ with ontogeny.  相似文献   

20.
Changing lobster abundance and the destruction of kelp beds by sea urchins   总被引:1,自引:0,他引:1  
In a study area in Nova Scotia, Canada, abundance of the lobster Homarus americanus decreased by nearly 50% in 14 years. The lobster is a major predator of sea urchins, and during the past 6 years the sea urchin Strongylocentrotus droebachiensis has destroyed 70% of the beds of Laminaria spp. in the area. Implications for management are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号