首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Availability of colloidal ferric oxides to coastal marine phytoplankton   总被引:5,自引:0,他引:5  
Cell growth of a coastal marine diatom, Phaeodactylum tricornutum (stock cultures), and two red tide marine flagellates, Heterosigma akashiwo and Gymnodinium mikimotoi (stock cultures), in the presence of soluble chelated Fe(III)-EDTA (1:2) and of four different phases of ferric oxide colloids were experimentally measured in culture experiments at 20°C under 3000 lux fluorescent light. Soluble Fe(III)-EDTA induced the maximal growth rates and cell yields. The short-term uptake rate of iron by H. akashiwo in Fe(III)-EDTA medium was about eight times faster than that in solid amorphous hydrous ferric oxide (Fe2O3·xH2O) medium. In culture experiments supplied with four different ferric oxide forms, the orders of cell yields are amorphous hydrous ferric oxide>-FeOOH (lepidocrocite)>Fe5O7(OH)·4H2O (hydrated ferric oxyhydroxide polymer >-FeOOH (goethite). The specific growth rates () at logarithmic growth phase in Fe(III)-EDTA, amorphous hydrous ferric oxide and -FeOOH media were significantly greater than those in Fe5O7 (OH)·4H2O and -FeOOH media. The thermodynamically stable forms such as Fe5O7(OH)·4H2O and -FeOOH supported a little or no phytoplankton growth. The iron solublities and/or proton-promoted iron dissolution rates of these colloidal ferric oxides in seawater at 20°C were determined by simple filtration techniques involving -activity measurements of 59Fe. The orders of solubilities and estimated dissolution rate constants of these ferric oxides in seawater were consistent with that of cell yields in the culture experiments. These results suggest that the availability of colloidal iron to provide a source of iron for phytoplankton is related to the thermodynamic stability and kinetic lability of the colloidal ferric oxide phases, which probably control the uptake rate of iron by phytoplankton.  相似文献   

2.
Nanoscale zero-valent iron, named nano-Fe0, is a reagent used to degrade trichloroethylene in groundwater. However, the efficiency of nano-Fe0 is moderate due to issues of dispersion and reactivity. As an alternative we synthesized bentonite-supported nanoscale Fe/Ni bimetals, named bentonite-Fe/Ni, to test the degradation of trichloroethylene in the presence of Suwannee River humic acids, as a representative of natural organic matter. 0.1 mmol/L trichloroethylene was reacted with 0.5 g/L of nano-Fe0, bentonite-Fe, Fe/Ni, and bentonite-Fe/Ni nanoparticles. Results show first that without humic acids the reaction rate constants k obs were 0.0036/h for nano-Fe0, 0.0101/h for bentonite-Fe, 0.0984/h for Fe/Ni, and 0.181/h for bentonite-Fe/Ni. These findings show that bentonite-Fe/Ni is the most efficient reagent. Second, the addition of humic acids increased the rate constant from 0.178/h for 10 mg/L humic acids to 0.652/h for 40 mg/L humic acids, using the bentonite-Fe/Ni catalyst. This finding is explained by accelerated dechlorination by faster electron transfer induced by humic quinone moieties. Indeed, the use of 9, 10-anthraquinone-2, 6-disulfonate as a humic analogue gave similar results.  相似文献   

3.
The photodegradation of atrazine and the photochemical formation of Fe(II) and H2O2 in aqueous solutions containing salicylic acid and Fe(III) were studied under simulated sunlight irradiation. Atrazine photolysis followed first-order reaction kinetics, and the rate constant (k) corresponding to the solution of Fe(III)-salicylic acid complex (Fe(III)-SA) was only 0.0153 h?1, roughly one eighth of the k observed in the Fe(III) alone solution (0.115 h?1). Compared with Fe(III) solution, the presence of salicylic acid significantly enhanced the formation of Fe(II) but greatly decreased H2O2 generation, and their subsequent product, hydroxyl radical (˙OH), was much less, accounting for the low rate of atrazine photodegradation in Fe(III)-SA solution. The interaction of Fe(III) with salicylic acid was analyzed using Fourier-transform infrared (FTIR) spectroscopy and UV-visible absorption, indicating that Fe(III)-salicylic acid complex could be formed by ligand exchange between the hydrogen ions in salicylic acid and Fe(III) ions.  相似文献   

4.
The kinetics of ferrate(VI) (FeVIO4 2−, Fe(VI)) oxidation of an antiphlogistic drug, ibuprofen (IBP), as a function of pH (7.75–9.10) and temperature (25–45°C) were investigated to see the applicability of Fe(VI) in removing this drug from water. The rates decrease with an increase in pH and the rates are related to protonation of ferrate(VI). The rates increase with an increase in temperature. The E a of the reaction at pH 9.10 was calculated as 65.4±6.4 kJ mol−1. The rate constant of the HFeO4 with ibuprofen is lower than with the sulphur drug, sulfamethoxazole. The use of Fe(VI) to remove ibuprofen is briefly discussed.  相似文献   

5.
Here we show that the photolysis of FeCl2+ upon UV irradiation of Fe(III) at pH 0.5, yielding Cl and then Cl2−•, upon further reaction with Cl, induces phenol degradation. The photolysis of FeCl2+ can be highlighted and studied as the huge interference by FeOH2+ can be avoided under such conditions. Our data allowed the assessment of a photolysis quantum yield for FeCl2+ of 5.8 × 10−4 under UVA irradiation, much lower compared to the literature value of 0.5. The discrepancy can be explained if the photolysis process is efficient but photoformed Fe2+ and Cl undergo recombination inside the solvent cage.  相似文献   

6.
Pentachlorophenol (PCP) in contaminated soil was removed by treatment with aqueous solutions of iron(III)-porphyrin complexes as catalysts and potassium monopersulfate (KHSO5) as the oxygen donor. The contaminated soils were artificially prepared by spiking PCP to the kaolin and ando soils. Three types of iron(III)-porphyrin complexes, tetra(?p-sulfophenyl) porphineiron(III) (Fe(III)-TPPS), tetra(N-methyl-4-pyridil)porphineiron(III) (Fe(III)-TMPyP) and heme, were examined, and Fe(III)-TPPS was found to be the most effective for removing PCP. Although the sequential addition of KHSO5 was examined, in an attempt to improve the efficiency of PCP removal, it was not effective. In a preliminary test of various aqueous solutions, the addition of humic acid (HA), with a lower degree of humification, led to a significant enhancement in PCP removal. When HA was added to the soil system, the percentages of PCP removal were increased by up to 10% compared to the absence of HA. Therefore, the addition of HA to the catalytic system was useful in enhancing PCP removal from contaminated soil.  相似文献   

7.
The photo-Fenton reactions, which could yield hydroxyl radicals via the catalytic degradation of H2O2 by Fe(II), were focused as one of the abiotic degradation processes of bisphenol A (BPA) in surface waters. At pH 6, in the presence of H2O2 only, 32% of BPA was degraded after 120?min of irradiation. However, 97% of BPA was degraded in the presence of both H2O2 and Fe(II). Without light irradiation, no BPA degradation was observed even in the presence of Fe(II) and H2O2. These results show that photo-Fenton processes are effective in the natural attenuation of BPA in surface water. In addition, the presence of humic acids (HAs), which were of more aliphatic nature, resulted in enhancing BPA degradation via the photo-Fenton processes. Therefore, HAs can be one of the important factors in enhancing the degradation of BPA in surface water via the photo-Fenton processes.  相似文献   

8.
Biotransformation of Cr(VI) to less toxic Cr(III) has been known to produce insoluble Cr(III) compounds and soluble Cr(III) organic complexes. However, recent research reports have indicated that Cr(III) organic complexes are relatively stable in the environment. Little has been reported on the fate and toxic effects of Cr(III) organic compounds on organisms. In this study, the toxic effects of the soluble Cr(III) organic complexes [Cr(III) citrate, Cr(III) histidine, Cr(III) lactate and Cr(III) glutamate] to a local strain of Lactobacillus plantarum isolated from sauerkraut was investigated. Growth inhibition, viable cell count and lactic acid inhibition were measured to determine the toxicity potential of the test compounds. The EC50 values of Cr(III) citrate, Cr(III) histidine, Cr(III) lactate, and Cr(III) glutamate, calculated from the percent growth inhibition were found to be 56 mg L?1, 70 mg L?1, 81 mg L?1, and 85 mg L?1, respectively. Similar trend was observed in the viable cell counts and lactic acid production. Cr(VI) was observed to be more toxic than the Cr(III) organic compounds, while inorganic Cr(III) was the least toxic. The severity seemed to increase with increase in chromium compounds’ concentration. The results showed that Cr(III) citrate was the most toxic Cr(III) organic compound, while Cr(III) glutamate was the least.  相似文献   

9.
Cell growth of a coastal marine diatom, Chaetoceros sociale, in the presence of different premixed organic-Fe(III) complexes [EDTA-Fe(III) (100:1 and 2:1), citric-Fe(III) (100:1) and fulvic-Fe(III) (0.1, 0.2 and 1 ppm C)] and solid amorphous hydrous ferric oxide [am-Fe(III) or Fe(III) hydroxide] were experimentally measured in culture experiments at 10 °C under 3000 lux fluorescent light. Fulvic-Fe(III) (0.1 and 0.2 ppm C) and citric-Fe(III) (100:1) induced maximal cell yields of C. sociale. The order of cell yields was: fulvic-Fe(III) (0.1 and 0.2 ppm C) ≥ citric-Fe(III) (100:1) > EDTA-Fe(III) (2:1) ≫ solid am-Fe(III) > EDTA-Fe(III) (100:1) ≫ fulvic-Fe(III) (1 ppm C). The short-term iron uptake rates by C. sociale in fulvic-Fe(III) (0.1 and 0.2 ppm C) and citric-Fe(III) (100:1) media were about five to six times faster than those in EDTA-Fe(III) (100:1) and solid am-Fe(III) media. The dissociative precipitation rates of premixed organic-Fe(III) complexes in seawater at 10 °C were determined by simple filtration (0.025 μm) involving γ-activity measurements of 59Fe. The order of estimated initial Fe(III) dissociative precipitation rates of these organic-Fe(III) complexes in seawater were nearly consistent with those of cell yields in the culture experiments and short-term iron uptake rates by C. sociale [except for fulvic-Fe(III) (1 ppm C) medium]. In fulvic-Fe(III) (0.1 and 0.2 ppm C), citric-Fe(III) (100:1) and EDTA-Fe(III) (2:1) media, the concentrations of dissolved organic-Fe(III) complexes in initial culture experiments are prone to supersaturate under the culture conditions. The supersaturated dissolved organic-Fe(III) complex in seawater supplies biologically available inorganic Fe(III) species in culture media through its dissociation at high pH and high levels of seawater cations. Therefore, the natural dissolved organic-Fe(III) complexes supplied by riverine input may play an important role in supplying bioavailable iron in estuarine mixing system and coastal waters. Received: 6 September 1998 / Accepted: 8 April 1999  相似文献   

10.
The biochemical speciation of chromium compounds in mammalian cells is discussed with respect to uptake, metabolism, DNA binding and damaging. Whereas soluble hexavalent chromium is taken up rapidly and accumulated intracellularly after its reduction, compounds of trivalent chromium penetrate biomembranes about three orders of magnitude slower. Cr(VI) after its uptake is metabolised by electron donating compounds via Cr(V) to Cr(III) compounds. Chromium from various Cr(III) compounds, but not chromate, binds to chromatin in isolated cell nuclei. The DNA‐protein crosslinks and DNA strand breaks observed in rat liver and kidney after chromate administration are also found in vitro, when Cr(III) compounds (but not chromate) interacts with isolated nuclei. In the Chinese Hamster cell HGPRT mutation assay, three out of four tested Cr(III) complexes were found to be mutagenic. In a direct DNA strand break assay with supercoiled bacteriophage PM 2 DNA, neither chromate nor the four Cr(III) compounds tested caused nicks. However, the combined action of chromate plus glutathione as well as the isolated complex of pentavalent chromium, Na4Cr(glutathione)4, did cause DNA breaks. Reactive oxygen species are inferred to be the ultimate DNA nicking agents in this assay. In conclusion there appear to be two mechanisms of chromate genotoxicity; one with direct DNA damage caused by Cr(V) species and one via DNA‐protein crosslinks formed with Cr(III), the final reduction state of chromate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号