首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Area protection is a major mechanism deployed for environmental conservation in Antarctica. Yet, the Antarctic protected areas network is widely acknowledged as inadequate, in part because the criteria for area protection south of 60°S are not fully applied. The most poorly explored of these criteria is the type locality of species, which provides the primary legal means for Antarctic species-based area protection and a method for conserving species even if little is known about their habitat or distribution. The type locality criterion has not been systematically assessed since its incorporation into the Protocol on Environmental Protection to the Antarctic Treaty in 1991, so the extent to which the criterion is being met or might be useful for area protection is largely unknown. To address the matter, we created and analyzed a comprehensive database of Antarctic type localities of terrestrial and lacustrine lichens, plants, and animals. We compiled the database via a literature search of key taxonomic and geographic terms and then analyzed the distance between type localities identifiable to a ≤ 25km2 resolution and current Antarctic Specially Protected Areas (ASPAs) and human infrastructure. We used a distance-clustering approach for localities outside current ASPAs to determine candidate protected areas that could contain these unprotected localities. Of the 386 type localities analyzed, 108 were within or overlapped current ASPAs. Inclusion of the remaining 278 type localities in the ASPA network would require the designation of a further 105 protected areas. Twenty-four of these areas included human infrastructure disturbance. Given the slow rate of ASPA designation, growing pace of human impacts on the continent, and the management burden associated with ASPAs, we propose ways in which the type locality criterion might best be deployed. These include a comprehensive, systematic conservation planning approach and an alternative emphasis on the habitat of species, rather than on a single locality.  相似文献   

2.
Antarctic specially protected areas (ASPAs) are a key regulatory mechanism for protecting Antarctic environmental values. Previous evaluations of the effectiveness of the ASPA system focused on its representativeness and design characteristics, presenting a compelling rationale for its systematic revision. Upgrading the system could increase the representation of values within ASPAs, but representation alone does not guarantee the avoided loss or improvement of those values. Identifying factors that influence the effectiveness of ASPAs would inform the design and management of an ASPA system with the greatest capacity to deliver its intended conservation outcomes. To facilitate evaluations of ASPA effectiveness, we devised a research and policy agenda that includes articulating a theory of change for what outcomes ASPAs generate and how; building evaluation principles into ASPA design and designation processes; employing complementary approaches to evaluate multiple dimensions of effectiveness; and extending evaluation findings to identify and exploit drivers of positive conservation impact. Implementing these approaches will enhance the efficacy of ASPAs as a management tool, potentially leading to improved outcomes for Antarctic natural values in an era of rapid global change. Evaluación del impacto de conservación de las áreas protegidas de la Antártida  相似文献   

3.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

4.
Abstract: Protected areas are a cornerstone of conservation and have been designed largely around terrestrial features. Freshwater species and ecosystems are highly imperiled, but the effectiveness of existing protected areas in representing freshwater features is poorly known. Using the inland waters of Michigan as a test case, we quantified the coverage of four key freshwater features (wetlands, riparian zones, groundwater recharge, rare species) within conservation lands and compared these with representation of terrestrial features. Wetlands were included within protected areas more often than expected by chance, but riparian zones were underrepresented across all (GAP 1–3) protected lands, particularly for headwater streams and large rivers. Nevertheless, within strictly protected lands (GAP 1–2), riparian zones were highly represented because of the contribution of the national Wild and Scenic Rivers Program. Representation of areas of groundwater recharge was generally proportional to area of the reserve network within watersheds, although a recharge hotspot associated with some of Michigan's most valued rivers is almost entirely unprotected. Species representation in protected areas differed significantly among obligate aquatic, wetland, and terrestrial species, with representation generally highest for terrestrial species and lowest for aquatic species. Our results illustrate the need to further evaluate and address the representation of freshwater features within protected areas and the value of broadening gap analysis and other protected‐areas assessments to include key ecosystem processes that are requisite to long‐term conservation of species and ecosystems. We conclude that terrestrially oriented protected‐area networks provide a weak safety net for aquatic features, which means complementary planning and management for both freshwater and terrestrial conservation targets is needed.  相似文献   

5.
The use of total area protected as the predominant indicator of progress in building protected area (PA) networks is receiving growing criticism. Documenting the full dynamics of PA networks, both in terms of the gains and losses in protection, provides a much more informative approach to tracking progress. To this end, documentation of PA downgrading, downsizing, and degazettement (PADDD) has increased. Studies of PADDD events generally fail to place these losses in the context of gains in protection; therefore, they omit important elements of PA network dynamics. To address this limitation, we used a spatially explicit approach to identify every parcel of land added to and excised from the Australian terrestrial PA network and PAs that had their level of protection changed over 17 years (1997–2014). By quantifying changes in the spatial configuration of the PA network with time‐series data (spatial layers for nine separate time steps), ours is the first assessment of the dynamics (increases and decreases in area and level of protection) of a PA network and the first comprehensive assessment of PADDD in a developed country. We found that the Australian network was highly dynamic; there were 5233 changes in area or level of protection over 17 years. Against a background of enormous increases in area protected, we identified over 1500 PADDD events, which affected over one‐third of the network, which were largely the result of widespread downgrading of protection. We believe our approach provides a mechanism for robust tracking of trends in the world's PAs through the use of data from the World Database on Protected Areas. However, this will require greater transparency and improved data standards in reporting changes to PAs.  相似文献   

6.
Data on the location and extent of protected areas, ecosystems, and species’ distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected‐area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer‐resolution data on coral reefs as opposed to globally available coarse‐resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. Efectos de Errores y Vacíos en Conjuntos de Datos Espaciales sobre la Evaluación del Progreso de la Conservación  相似文献   

7.
Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected‐area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant‐cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility.  相似文献   

8.
Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional‐focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low‐elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.  相似文献   

9.
10.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

11.
Management‐effectiveness scores are used widely by donors and implementers of conservation projects to prioritize, track, and evaluate investments in protected areas. However, there is little evidence that these scores actually reflect the capacity of protected areas to deliver conservation outcomes. We examined the relation between indicators of management effectiveness in protected areas and the effectiveness of protected areas in reducing fire occurrence in the Amazon rainforest. We used data collected with the Management Effectiveness Tracking Tool (METT) scorecard, adopted by some of the world's largest conservation organizations to track management characteristics believed to be crucial for protected‐area effectiveness. We used the occurrence of forest fires from 2000 through 2010 as a measure of the effect of protected areas on undesired land‐cover change in the Amazon basin. We used matching to compare the estimated effect of protected areas with low versus high METT scores on fire occurrence. We also estimated effects of individual protected areas on fire occurrence and explored the relation between these effects and METT scores. The relations between METT scores and effects of protected areas on fire occurrence were weak. Protected areas with higher METT scores in 2005 did not seem to have performed better than protected areas with lower METT scores at reducing fire occurrence over the last 10 years. Further research into the relations between management‐effectiveness indicators and conservation outcomes in protected areas seems necessary, and our results show that the careful application of matching methods can be a suitable method for that purpose. Vinculación de Indicadores de Efectividad de Manejo con los Efectos Observados de la Ocurrencia de Fuego en Áreas Protegidas en la Amazonia  相似文献   

12.
Biodiversity offset schemes are globally popular policy tools for balancing the competing demands of conservation and development. Trading currencies for losses and gains in biodiversity value at development and credit sites are usually based on several vegetation attributes combined to yield a simple score (multimetric), but the score is rarely validated prior to implementation. Inaccurate biodiversity trading currencies are likely to accelerate global biodiversity loss through unrepresentative trades of losses and gains. We tested a model vegetation multimetric (i.e., vegetation structural and compositional attributes) typical of offset trading currencies to determine whether it represented measurable components of compositional and functional biodiversity. Study sites were located in remnant patches of a critically endangered ecological community in western Sydney, Australia, an area representative of global conflicts between conservation and expanding urban development. We sampled ant fauna composition with pitfall traps and enumerated removal by ants of native plant seeds from artificial seed containers (seed depots). Ants are an excellent model taxon because they are strongly associated with habitat complexity, respond rapidly to environmental change, and are functionally important at many trophic levels. The vegetation multimetric did not predict differences in ant community composition or seed removal, despite underlying assumptions that biodiversity trading currencies used in offset schemes represent all components of a site's biodiversity value. This suggests that vegetation multimetrics are inadequate surrogates for total biodiversity value. These findings highlight the urgent need to refine existing offsetting multimetrics to ensure they meet underlying assumptions of surrogacy. Despite the best intentions, offset schemes will never achieve their goal of no net loss of biodiversity values if trades are based on metrics unrepresentative of total biodiversity.  相似文献   

13.
Abstract: Researchers and conservation managers largely agree on the relevance of traditional ecological knowledge for natural resource management in indigenous communities, but its prevalence and role as societies modernize are contested. We analyzed the transmission of traditional knowledge among rural local people in communities linked to protected areas in Doñana, southwestern Spain. We studied changes in knowledge related to local practices in agriculture and livestock farming among 198 informants from three generations that cover the period in which the area transited from an economy strongly dependent on local ecosystem services to a market economy with intensified production systems. Our results suggest an abrupt loss of traditional agricultural knowledge related to rapid transformations and intensification of agricultural systems, but maintenance of knowledge of traditional livestock farming, an activity allowed in the protected areas that maintains strong links with local cultural identity. Our results demonstrate the potential of protected areas in protecting remaining bodies of traditional ecological knowledge in developed country settings. Nevertheless, we note that strict protection in cultural‐landscape‐dominated areas can disrupt transmission of traditional knowledge if local resource users and related practices are excluded from ecosystem management.  相似文献   

14.
Wilderness areas are ecologically intact landscapes predominantly free of human uses, especially industrial‐scale activities that result in substantial biophysical disturbance. This definition does not exclude land and resource use by local communities who depend on such areas for subsistence and bio‐cultural connections. Wilderness areas are important for biodiversity conservation and sustain key ecological processes and ecosystem services that underpin planetary life‐support systems. Despite these widely recognized benefits and values of wilderness, they are insufficiently protected and are consequently being rapidly eroded. There are increasing calls for multilateral environmental agreements to make a greater and more systematic contribution to wilderness conservation before it is too late. We created a global map of remaining terrestrial wilderness following the established last‐of‐the‐wild method, which identifies the 10% of areas with the lowest human pressure within each of Earth's 62 biogeographic realms and identifies the 10 largest contiguous areas and all contiguous areas >10,000 km2. We used our map to assess wilderness coverage by the World Heritage Convention and to identify gaps in coverage. We then identified large nationally designated protected areas with good wilderness coverage within these gaps. One‐quarter of natural and mixed (i.e., sites of both natural and cultural value) World Heritage Sites (WHS) contained wilderness (total of 545,307 km2), which is approximately 1.8% of the world's wilderness extent. Many WHS had excellent wilderness coverage, for example, the Okavango Delta in Botswana (11,914 km2) and the Central Suriname Nature Reserve (16,029 km2). However, 22 (35%) of the world's terrestrial biorealms had no wilderness representation within WHS. We identified 840 protected areas of >500 km2 that were predominantly wilderness (>50% of their area) and represented 18 of the 22 missing biorealms. These areas offer a starting point for assessing the potential for the designation of new WHSs that could help increase wilderness representation on the World Heritage list. We urge the World Heritage Convention to ensure that the ecological integrity and outstanding universal value of existing WHS with wilderness values are preserved.  相似文献   

15.
Abstract: One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum‐entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected‐area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species‐distribution models was better for endemic and threatened species than it was for all species. Forty‐seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected‐area system) are needed. There was overlap in 26 of the main selected areas in the conservation‐area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.  相似文献   

16.
Abstract: Our knowledge of cryptogam taxonomy and species distributions is currently too poor to directly plan for their conservation. We used inventory data from four distinct vegetation types, near Hobart Tasmania, to address the proposition that vegetation type, vascular plant taxon composition, and environmental variables can act as surrogates for mosses and macrofungi in reservation planning. The four vegetation types proved distinct in their taxon composition for all macrofungi, mosses, and vascular plants. We tested the strength of the relationships between the composition of cryptogam taxonomic groups and vascular plant composition and between the environmental variables and canopy cover. Taxon composition of woody vascular plants and vascular plants was the best predictor of the taxon composition of mosses and macrofungi. Combinations of environmental variables and canopy cover were also strong predictors of the taxon composition of mosses and macrofungi. We used an optimization routine for vascular plant taxa and woody plant species and determined the representation of cryptogam taxa in these selections. We identified sites with approximately 10% and 30% of the greatest proportions of vascular plants and woody vascular plants and calculated representation of mosses and macrofungi at these sites. We compared the results of these site selections with random site selections and random selections stratified by vegetation type. Random selection of sites by vegetation type generally captured more cryptogams than site selection by vascular plants at the 10% level. Vascular plant and woody plant taxon composition, vegetation type, and environmental and structural characteristics, all showed promise as surrogates for capturing common cryptogams in reserve systems.  相似文献   

17.
Abstract: Protected areas cover over 12% of the terrestrial surface of Earth, and yet many fail to protect species and ecological processes as originally envisioned. Results of recent studies suggest that a critical reason for this failure is an increasing contrast between the protected lands and the surrounding matrix of often highly altered land cover. We measured the isolation of 114 protected areas distributed worldwide by comparing vegetation‐cover heterogeneity inside protected areas with heterogeneity outside the protected areas. We quantified heterogeneity as the contagion of greenness on the basis of NDVI (normalized difference vegetation index) values, for which a higher value of contagion indicates less heterogeneous land cover. We then measured isolation as the difference between mean contagion inside the protected area and mean contagion in 3 buffer areas of increasing distance from the protected‐area border. The isolation of protected areas was significantly positive in 110 of the 114 areas, indicating that vegetation cover was consistently more heterogeneous 10–20 km outside protected areas than inside their borders. Unlike previous researchers, we found that protected areas in which low levels of human activity are allowed were more isolated than areas in which high levels are allowed. Our method is a novel way to assess the isolation of protected areas in different environmental contexts and regions.  相似文献   

18.
Extinction‐risk assessments aim to identify biological diversity features threatened with extinction. Although largely developed at the species level, these assessments have recently been applied at the ecosystem level. In South Africa, national legislation provides for the listing and protection of threatened ecosystems. We assessed how land‐cover mapping and the detail of ecosystem classification affected the results of risk assessments that were based on extent of habitat loss. We tested 3 ecosystem classifications and 4 land‐cover data sets of the Little Karoo region, South Africa. Degraded land (in particular, overgrazed areas) was successfully mapped in just one of the land‐cover data sets. From <3% to 25% of the Little Karoo was classified as threatened, depending on the land‐cover data set and ecosystem classification applied. The full suite of threatened ecosystems on a fine‐scale map was never completely represented within the spatial boundaries of a coarse‐scale map of threatened ecosystems. Our assessments highlight the importance of land‐degradation mapping for the listing of threatened ecosystems. On the basis of our results, we recommend that when budgets are constrained priority be given to generating more‐detailed land‐cover data sets rather than more‐detailed ecosystem classifications for the assessment of threatened ecosystems. El Efecto de la Cobertura Terrestre y el Mapeo de Ecosistemas en la Valoración de Riesgos en los Ecosistemas en Little Karoo, Sudáfrica  相似文献   

19.
Abstract: Evaluation is important for judiciously allocating limited conservation resources and for improving conservation success through learning and strategy adjustment. We evaluated the application of systematic conservation planning goals and conservation gains from incentive‐based stewardship interventions on private land in the Cape Lowlands and Cape Floristic Region, South Africa. We collected spatial and nonspatial data (2003–2007) to determine the number of hectares of vegetation protected through voluntary contractual and legally nonbinding (informal) agreements with landowners; resources spent on these interventions; contribution of the agreements to 5‐ and 20‐year conservation goals for representation and persistence in the Cape Lowlands of species and ecosystems; and time and staff required to meet these goals. Conservation gains on private lands across the Cape Floristic Region were relatively high. In 5 years, 22,078 ha (27,800 ha of land) and 46,526 ha (90,000 ha of land) of native vegetation were protected through contracts and informal agreements, respectively. Informal agreements often were opportunity driven and cheaper and faster to execute than contracts. All contractual agreements in the Cape Lowlands were within areas of high conservation priority (identified through systematic conservation planning), which demonstrated the conservation plan's practical application and a high level of overlap between resource investment (approximately R1.14 million/year in the lowlands) and priority conservation areas. Nevertheless, conservation agreements met only 11% of 5‐year and 9% of 20‐year conservation goals for Cape Lowlands and have made only a moderate contribution to regional persistence of flora to date. Meeting the plan's conservation goals will take three to five times longer and many more staff members to maintain agreements than initially envisaged.  相似文献   

20.
The European Union has made extensive biodiversity conservation efforts with the Habitats and Birds Directives and with the establishment of the Natura 2000 network of protected areas, one of the largest networks of conservation areas worldwide. We performed a gap analysis of the entire Natura 2000 system plus national protected areas and all terrestrial vertebrates (freshwater fish excluded). We also evaluated the level of connectivity of both systems, providing therefore a first estimate of the functionality of the Natura 2000 system as an effective network of protected areas. Together national protected areas and the Natura 2000 network covered more than one‐third of the European Union. National protected areas did not offer protection to 13 total gap species (i.e., species not covered by any protected area) or to almost 300 partial gap species (i.e., species whose representation target is not met). Together the Natura 2000 network and national protected areas left 1 total gap species and 121 partial gap species unprotected. The terrestrial vertebrates listed in the Habitats and Birds Directives were relatively well covered (especially birds), and overall connectivity was improved considerably by Natura 2000 sites that act as stepping stones between national protected areas. Overall, we found that the Natura 2000 network represents at continental level an important network of protected areas that acts as a good complement to existing national protected areas. However, a number of problems remain that are mainly linked to the criteria used to list the species in the Habitats and Birds Directives. The European Commission initiated in 2014 a process aimed at assessing the importance of the Birds and Habitats Directives for biodiversity conservation. Our results contribute to this assessment and suggest the system is largely effective for terrestrial vertebrates but would benefit from further updating of the species lists and field management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号