首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   

2.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

3.
Abstract: Noise may drive changes in the composition and abundance of animals that communicate vocally. Traffic produces low‐frequency noise (<3 kHz) that can mask acoustic signals broadcast within the same frequency range. We evaluated whether birds that sing within the frequency range of traffic noise are affected by acoustic masking (i.e., increased background noise levels at the same frequency of vocalizations reduce detection of vocalization) and are less abundant in areas where traffic noise is loud (44–57 dB). We estimated occupancy, the expected probability that a given site is occupied by a species, and detection probabilities of eight forest‐breeding birds in areas with and without traffic noise as a function of noise and three measures of habitat quality: percent forest cover, distance from plot center to the edge of forest, and the number of standing dead trees or snags. For the two species that vocalize at the lowest peak frequency (the frequency with the most energy) and the lowest overall frequency (Yellow‐billed Cuckoo [Coccyzus americanus] and White‐breasted Nuthatch [Sitta carolinensis]), the presence of traffic noise explained the greatest proportion of variance in occupancy, and these species were 10 times less likely to be found in noisy than in quiet plots. For species that had only portions of their vocalizations overlapped by traffic noise, either forest cover or distance to forest edge explained more variation in occupancy than noise or no single variable explained occupancy. Our results suggest that the effects of traffic noise may be especially pronounced for species that vocalize at low frequencies.  相似文献   

4.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

5.
Land‐use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species’ associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest‐interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. Efectos del Desarrollo Exurbano y de la Temperatura sobre Especies de Aves en las Apalaches del Sur  相似文献   

6.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

7.
Wind energy development is the most recent of many pressures on upland bird communities and their habitats. Studies of birds in relation to wind energy development have focused on effects of direct mortality, but the importance of indirect effects (e.g., displacement, habitat loss) on avian community diversity and stability is increasingly being recognized. We used a control-impact study in combination with a gradient design to assess the effects of wind farms on upland bird densities and on bird species grouped by habitat association (forest and open-habitat species). We conducted 506 point count surveys at 12 wind-farm and 12 control sites in Ireland during 2 breeding seasons (2012 and 2013). Total bird densities were lower at wind farms than at control sites, and the greatest differences occurred close to turbines. Densities of forest species were significantly lower within 100 m of turbines than at greater distances, and this difference was mediated by habitat modifications associated with wind-farm development. In particular, reductions in forest cover adjacent to turbines was linked to the observed decrease in densities of forest species. Open-habitat species’ densities were lower at wind farms but were not related to distance from turbines and were negatively related to size of the wind farm. This suggests that, for these species, wind-farm effects may occur at a landscape scale. Our findings indicate that the scale and intensity of the displacement effects of wind farms on upland birds depends on bird species’ habitat associations and that the observed effects are mediated by changes in land use associated with wind-farm construction. This highlights the importance of construction effects and siting of turbines, tracks, and other infrastructure in understanding the impacts of wind farms on biodiversity.  相似文献   

8.
The trade in wild animals involves one‐third of the world's bird species and thousands of other vertebrate species. Although a few species are imperiled as a result of the wildlife trade, the lack of field studies makes it difficult to gauge how serious a threat it is to biodiversity. We used data on changes in bird abundances across space and time and information from trapper interviews to evaluate the effects of trapping wild birds for the pet trade in Sumatra, Indonesia. To analyze changes in bird abundance over time, we used data gathered over 14 years of repeated bird surveys in a 900‐ha forest in southern Sumatra. In northern Sumatra, we surveyed birds along a gradient of trapping accessibility, from the edge of roads to 5 km into the forest interior. We interviewed 49 bird trappers in northern Sumatra to learn which species they targeted and how far they went into the forest to trap. We used prices from Sumatran bird markets as a proxy for demand and, therefore, trapping pressure. Market price was a significant predictor of species declines over time in southern Sumatra (e.g., given a market price increase of approximately $50, the log change in abundance per year decreased by 0.06 on average). This result indicates a link between the market‐based pet trade and community‐wide species declines. In northern Sumatra, price and change in abundance were not related to remoteness (distance from the nearest road). However, based on our field surveys, high‐value species were rare or absent across this region. The median maximum distance trappers went into the forest each day was 5.0 km. This suggests that trapping has depleted bird populations across our remoteness gradient. We found that less than half of Sumatra's remaining forests are >5 km from a major road. Our results suggest that trapping for the pet trade threatens birds in Sumatra. Given the popularity of pet birds across Southeast Asia, additional studies are urgently needed to determine the extent and magnitude of the threat posed by the pet trade.  相似文献   

9.
Many bird populations have recently changed their migratory behavior in response to alterations of the environment. We collected data over 16 years on male Great Bustards (Otis tarda), a species showing a partial migratory pattern (sedentary and migratory birds coexisting in the same breeding groups). We conducted population counts and radio tracked 180 individuals to examine differences in survival rates between migratory and sedentary individuals and evaluate possible effects of these differences on the migratory pattern of the population. Overall, 65% of individuals migrated and 35% did not. The average distance between breeding and postbreeding areas of migrant individuals was 89.9 km, and the longest average movement of sedentary males was 3.8 km. Breeding group and migration distance had no effect on survival. However, mortality of migrants was 2.4 to 3.5 times higher than mortality of sedentary birds. For marked males, collision with power lines was the main cause of death from unnatural causes (37.6% of all deaths), and migratory birds died in collisions with power lines more frequently than sedentary birds (21.3% vs 6.3%). The percentage of sedentary individuals increased from 17% in 1997 to 45% in 2012. These results were consistent with data collected from radio‐tracked individuals: The proportion of migratory individuals decreased from 86% in 1997–1999 to 44% in 2006–2010. The observed decrease in the migratory tendency was not related to climatic changes (temperatures did not change over the study period) or improvements in habitat quality (dry cereal farmland area decreased in the main study area). Our findings suggest that human‐induced mortality during migration may be an important factor shaping the migration patterns of species inhabiting humanized landscapes.  相似文献   

10.
Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch‐size‐induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland‐bird demography and could be an effective component of climate‐change adaptation.  相似文献   

11.
Abstract: Collisions of birds with power transmission and distribution lines have been documented for many species, and cause millions of casualties worldwide. Attempts to reduce mortality from such collisions include placing bird flight diverters (i.e., wire markers in the form of, e.g., spirals, swivels, plates, or spheres) on static and some electrified wires to increase their visibility. Although studies of the effectiveness of such devices have yielded contradictory results, the implementation of flight diverters is increasing rapidly. We reviewed the results of studies in which transmission or distribution wires were marked and conducted a meta‐analysis to examine the effectiveness of flight diverters in reducing bird mortality. We included in our meta‐analysis all studies in which researchers searched for carcasses of birds killed by a collision with wires. In those studies that also included data on flight frequency, we examined 8 covariates of effectiveness: source of data, study design, alternate design (if marked and unmarked spans were alternated in the same line), periodicity of searches for carcasses, width of the search transect, and number of species, lines, and stretches of wire searched. The presence of flight diverters was associated with a decrease in bird collisions. At unmarked lines, there were 0.21 deaths/1000 birds (n =339,830) that flew among lines or over lines. At marked lines, the mortality rate was 78% lower (n =1,060,746). Only the number of species studied had a significant influence on effect size; this was larger in studies that addressed more species. When comparing mortality at marked and unmarked lines, we recommend use of the same time intervals and habitats and standardizing the periodicity of carcass searches.  相似文献   

12.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   

13.
Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life‐history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long‐term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under‐road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under‐road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines. Efectos de la Mortalidad en Carreteras y Medidas de Mitigación en Poblaciones de Anfibios Beebee  相似文献   

14.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   

15.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

16.
Long-term population declines have elevated recovery of grassland avifauna to among the highest conservation priorities in North America. Because most of the Great Plains is privately owned, recovery of grassland bird populations depends on voluntary conservation with strong partnerships between private landowners and resource professionals. Despite large areas enrolled in voluntary practices through U.S. Department of Agriculture's Lesser Prairie-chicken (Tympanuchus pallidicinctus) Initiative (LPCI), the effectiveness of Farm Bill investments for meeting wildlife conservation goals remains an open question. Our objectives were to evaluate extents to which Conservation Reserve Program (CRP) and LPCI-grazing practices influence population densities of grassland birds; estimate relative contributions of practices to regional bird populations; and evaluate percentages of populations conserved relative to vulnerability of species. We designed a large-scale impact-reference study and used the Integrated Monitoring in Bird Conservation Regions program to evaluate bird population targets of the Playa Lakes Joint Venture. We used point transect distance sampling to estimate density and population size for 35 species of grassland birds on private lands enrolled in native or introduced CRP plantings and LPCI-prescribed grazing. Treatment effects indicated CRP plantings increased densities of three grassland obligates vulnerable to habitat loss, and LPCI grazing increased densities of four species requiring heterogeneity in dense, tall-grass structure (α = 0.1). Population estimates in 2016 indicated the practices conserved breeding habitat for 4.5 million birds (90% CI: 4.0–5.1), and increased population sizes of 16 species , totaling 1.8 million birds (CI: 1.4–2.4). Conservation practices on private land benefited the most vulnerable grassland obligate species (AICc weight = 0.53). By addressing habitat loss and degradation in agricultural landscapes, conservation on private land provides a solution to declining avifauna of North America and scales up to meet population recovery goals for the most imperiled grassland birds.  相似文献   

17.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

18.
Conservation actions, such as habitat protection, attempt to halt the loss of threatened species and help their populations recover. The efficiency and the effectiveness of actions have been examined individually. However, conservation actions generally occur simultaneously, so the full suite of implemented conservation actions should be assessed. We used the conservation actions underway for all threatened and near‐threatened birds of the world (International Union for Conservation of Nature Red List of Threatened Species) to assess which biological (related to taxonomy and ecology) and anthropogenic (related to geoeconomics) factors were associated with the implementation of different classes of conservation actions. We also assessed which conservation actions were associated with population increases in the species targeted. Extinction‐risk category was the strongest single predictor of the type of conservation actions implemented, followed by landmass type (continent, oceanic island, etc.) and generation length. Species targeted by invasive nonnative species control or eradication programs, ex situ conservation, international legislation, reintroduction, or education, and awareness‐raising activities were more likely to have increasing populations. These results illustrate the importance of developing a predictive science of conservation actions and the relative benefits of each class of implemented conservation action for threatened and near‐threatened birds worldwide.  相似文献   

19.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

20.
For conservation decision making, species’ geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse‐resolution extent‐of‐occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent‐of‐occurrence maps as range summaries and the utility of refining those maps into fine‐resolution distributional hypotheses. Extent‐of‐occurrence maps tend to be overly simple, omit many known and well‐documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species’ true areas of distribution. However, no model‐evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse‐grained, global‐extent studies, their continued use in on‐the‐ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data‐driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data‐driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well‐founded, widely accepted method for summarizing species’ distributional patterns for conservation applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号