首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.  相似文献   

2.
Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life‐history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. Efectos de la Densidad de Poblaciones Humanas y la Proximidad del Mercado sobre Peces de Arrecifes de Coral Vulnerables a la Extinción  相似文献   

3.
The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small‐scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem‐based management approaches. However, ecosystem‐based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life‐history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade‐offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem‐based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem‐based management targets, enabling ecosystem‐based management in many socioeconomic contexts.  相似文献   

4.
The sustained decline in marine fisheries worldwide underscores the need to understand and monitor fisheries trends and fisher behavior. Recreational fisheries are unique in that they are not subject to the typical drivers that influence commercial and artisanal fisheries (e.g., markets or food security). Nevertheless, although exposed to a different set of drivers (i.e., interest or relaxation), recreational fisheries can contribute to fishery declines. Recreational fisheries are also difficult to assess due to an absence of past monitoring and traditional fisheries data. Therefore, we utilized a nontraditional data source (a chronology of spearfishing publications) to document historical trends in recreational spearfishing in Australia between 1952 and 2009. We extracted data on reported fish captures, advertising, and spearfisher commentary and used regression models and ordination analyses to assess historical change. The proportion of coastal fish captures reported declined approximately 80%, whereas the proportion of coral reef and pelagic fish reports increased 1750% and 560%, respectively. Catch composition shifted markedly from coastal temperate or subtropical fishes during the 1950s to 1970s to coral reef and pelagic species in the 1990s to 2000s. Advertising data and commentary by spearfishers indicated that pelagic fish species became desired targets. The mean weight of trophy coral reef fishes also declined significantly over the study period (from approximately 30–8 kg). Recreational fishing presents a highly dynamic social–ecological interface and a challenge for management. Our results emphasize the need for regulatory agencies to work closely with recreational fishing bodies to observe fisher behavior, detect shifts in target species or fishing intensity, and adapt regulatory measures. Tendencias Dinámicas de Captura en la Historia de la Pesca Recreativa con Arpón en Australia  相似文献   

5.
Abstract: Customary management systems (i.e., management systems that limit the use of marine resources), such as rotational fisheries closures, can limit harvest of resources. Nevertheless, the explicit goals of customary management are often to influence fish behavior (in particular flight distance, i.e., distance at which an organism begins to flee an approaching threat), rather than fish abundance. We explored whether the flight distance of reef fishes targeted by local artisanal fishers differed between a customary closure and fished reefs. We also examined whether flight distance of these species affected fishing success and accuracy of underwater visual census (UVC) between customary closed areas and areas open to fishing. Several species demonstrated significant differences in flight distance between areas, indicating that fishing activity may increase flight distance. These relatively long flight distances mean that in fished areas most target species may stay out of the range of spear fishers. In addition, mean flight distances for all species both inside and outside the customary‐closure area were substantially smaller than the observation distance of an observer conducting a belt‐transect UVC (mean [SE]= 8.8 m [0.48]). For targeted species that showed little ability to evade spear fishers, customary closures may be a vital management technique. Our results show that customary closures can have a substantial, positive effect on resource availability and that conventional UVC techniques may be insensitive to changes in flight behavior of fishes associated with fishing. We argue that short, periodic openings of customary closures may allow the health of the fish community to be maintained and local fishers to effectively harvest fishes.  相似文献   

6.
Reef‐fish management and conservation is hindered by a lack of information on fish populations prior to large‐scale contemporary human impacts. As a result, relatively pristine sites are often used as conservation baselines for populations near sites affected by humans. This space‐for‐time approach can only be validated by sampling assemblages through time. We used archaeological remains to evaluate whether the remote, uninhabited Northwestern Hawaiian Islands (NWHI) might provide a reasonable proxy for a lightly exploited baseline in the Main Hawaiian Islands (MHI). We used molecular and morphological techniques to describe the taxonomic and size composition of the scarine parrotfish catches present in 2 archaeological assemblages from the MHI, compared metrics of these catches with modern estimates of reproductive parameters to evaluate whether catches represented by the archaeological material were consistent with sustainable fishing, and evaluated overlap between size structures represented by the archaeological material and modern survey data from the MHI and the NWHI to assess whether a space‐for‐time substitution is reasonable. The parrotfish catches represented by archaeological remains were consistent with sustainable fishing because they were dominated by large, mature individuals whose average size remained stable from prehistoric (AD approximately 1400–1700) through historic (AD 1700–1960) periods. The ancient catches were unlike populations in the MHI today. Overlap between the size structure of ancient MHI catches and modern survey data from the NWHI or the MHI was an order of magnitude greater for the NWHI comparison, a result that supports the validity of using the NWHI parrotfish data as a proxy for the MHI before accelerated, heavy human impacts in modern times. Evidencia Arqueológica de la Validez de Poblaciones de Peces en Arrecifes Sin Explotar como Objetivos de Apoderamiento para Poblaciones Actuales  相似文献   

7.
Abstract: The adoption of fisheries closures and gear restrictions in the conservation of coral reefs may be limited by poor understanding of the economic profitability of competing economic uses of marine resources. Over the past 12 years, I evaluated the effects of gear regulation and fisheries closures on per person and per area incomes from fishing in coral reefs of Kenya. In two of my study areas, the use of small‐meshed beach seines was stopped after 6 years; one of these areas was next to a fishery closure. In my third study area, fishing was unregulated. Fishing yields on per capita daily wet weight basis were 20% higher after seine‐net fishing was stopped. The per person daily fishing income adjacent to the closed areas was 14 and 22% higher than the fishing income at areas with only gear restrictions before and after the seine‐net restriction, respectively. Incomes differed because larger fish were captured next to the closed area and the price per weight (kilograms) increased as fish size increased and because catches adjacent to the closure contained fish species of higher market value. Per capita incomes were 41 and 135% higher for those who fished in gear‐restricted areas and near‐closed areas, respectively, compared with those who fished areas with no restrictions. On a per unit area basis (square kilometers), differences in fishing income among the three areas were not large because fishing effort increased as the number of restrictions decreased. Changes in catch were, however, larger and often in the opposite direction expected from changes in effort alone. For example, effort declined 21% but nominal profits per square kilometer (not accounting for inflation) increased 29% near the area with gear restrictions. Gear restrictions also reduced the cost of fishing and increased the proportion of self‐employed fishers.  相似文献   

8.
Factors affecting population recovery from depletion are at the focus of wildlife management. Particularly, it has been debated how life‐history characteristics might affect population recovery ability and productivity. Many exploited fish stocks have shown temporal changes towards earlier maturation and reduced adult body size, potentially owing to evolutionary responses to fishing. Whereas such life‐history changes have been widely documented, their potential role on stock's ability to recover from exploitation often remains ignored by traditional fisheries management. We used a marine ecosystem model parameterized for Southeastern Australian ecosystem to explore how changes towards “faster” life histories might affect population per capita growth rate r. We show that for most species changes towards earlier maturation during fishing have a negative effect (3–40% decrease) on r during the recovery phase. Faster juvenile growth and earlier maturation were beneficial early in life, but smaller adult body sizes reduced the lifetime reproductive output and increased adult natural mortality. However, both at intra‐ and inter‐specific level natural mortality and trophic position of the species were as important in determining r as species longevity and age of maturation, suggesting that r cannot be predicted from life‐history traits alone. Our study highlights that factors affecting population recovery ability and productivity should be explored in a multi‐species context, where both age‐specific fecundity and survival schedules are addressed simultaneously. It also suggests that contemporary life‐history changes in harvested species are unlikely to increase their resilience and recovery ability.  相似文献   

9.
Abstract: Increasing migration into urbanized centers in the Solomon Islands poses a great threat to adjacent coral reef fisheries because of negative effects on the fisheries and because it further erodes customary management systems. Parrotfish fisheries are of particular importance because the feeding habits of parrotfish (scrape and excavate coral) are thought to be critical to the resilience of coral reefs and to maintaining coral reef health within marine protected areas. We investigated the ecological impact of localized subsistence and artisanal fishing pressure on parrotfish fisheries in Gizo Town, Western Solomon Islands, by analyzing the density and size distribution of parrotfish with an underwater visual census (UVC), recall diary (i.e., interviews with fishers), and creel surveys to independently assess changes in abundance and catch‐per‐unit‐effort (CPUE) over 2 years. We then compared parrotfish data from Gizo Town with equivalent data from sites open to and closed to fishing in Kida and Nusa Hope villages, which have different customary management regimes. Results indicated a gradient of customary management effectiveness. Parrotfish abundance was greater in customary management areas closed to fishing, especially with regard to larger fish sizes, than in areas open to fishing. The decline in parrotfish abundance from 2004 to 2005 in Gizo was roughly the same magnitude as the difference in abundance decline between inside and outside customary management marine reserves. Our results highlight how weak forms of customary management can result in the rapid decline of vulnerable fisheries around urbanized regions, and we present examples in which working customary management systems (Kinda and Nusa Hope) can positively affect the conservation of parrotfish—and reef fisheries in general—in the highly biodiverse Coral Triangle region.  相似文献   

10.
Abstract: Freshwater biodiversity conservation is generally perceived to conflict with human use and extraction (e.g., fisheries). Overexploited fisheries upset the balance between local economic needs and endangered species’ conservation. We investigated resource competition between fisheries and Ganges river dolphins (Platanista gangetica gangetica) in a human‐dominated river system in India to assess the potential for their coexistence. We surveyed a 65‐km stretch of the lower Ganga River to assess habitat use by dolphins (encounter rates) and fishing activity (habitat preferences of fishers, intensity of net and boat use). Dolphin abundance in the main channel increased from 179 (SE 7) (mid dry season) to 270 (SE 8) (peak dry season), probably as a result of immigration from upstream tributaries. Dolphins preferred river channels with muddy, rocky substrates, and deep midchannel waters. These areas overlapped considerably with fishing areas. Sites with 2–6 boats/km (moderately fished) were more preferred by dolphins than sites with 8–55 boats/km (heavily fished). Estimated spatial (85%) and prey–resource overlap (75%) between fisheries and dolphins (chiefly predators of small fish) suggests a high level of competition between the two groups. A decrease in abundance of larger fish, indicated by the fact that small fish comprised 74% of the total caught, may have intensified the present competition. Dolphins seem resilient to changes in fish community structure and may persist in overfished rivers. Regulated fishing in dolphin hotspots and maintenance of adequate dry season flows can sustain dolphins in tributaries and reduce competition in the main river. Fish‐stock restoration and management, effective monitoring, curbing destructive fishing practices, secure tenure rights, and provision of alternative livelihoods for fishers may help reconcile conservation and local needs in overexploited river systems.  相似文献   

11.
In order to properly determine the efficacy of marine protected areas (MPAs), a seascape perspective that integrates ecosystem elements at the appropriate ecological scale is necessary. Over the past four decades, Hawaii has developed a system of 11 Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discrete sampling units. Digital benthic habitat maps for all MLCDs and adjacent habitats were used to evaluate the efficacy of existing MLCDs using a spatially explicit stratified random sampling design. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that a number of fish assemblage characteristics (e.g., species richness, biomass, diversity) vary among habitat types, but were significantly higher in MLCDs compared with adjacent fished areas across all habitat types. Overall fish biomass was 2.6 times greater in the MLCDs compared to open areas. In addition, apex predators and other species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations within their boundaries. Habitat type, protected area size, and level of protection from fishing were all important determinates of MLCD effectiveness with respect to their associated fish assemblages. Although size of these protected areas was positively correlated with a number of fish assemblage characteristics, all appear too small to have any measurable influence on the adjacent fished areas. These protected areas were not designed for biodiversity conservation or fisheries enhancement yet still provide varying degrees of protection for fish populations within their boundaries. Implementing this type of biogeographic process, using remote sensing technology and sampling across the range of habitats present within the seascape, provides a robust evaluation of existing MPAs and can help to define ecologically relevant boundaries for future MPA design in a range of locations.  相似文献   

12.
Abstract:  Fishing activities worldwide have dramatically affected marine fish stocks and ecosystems. Marine protected areas (MPAs) with no-take zones may enhance fisheries, but empirical evidence of this is scant. We conducted a 4-year survey of fish catches around and within an MPA that was previously fully closed to fishing and then partially reopened under regulated comanaged fishing. In collaboration with the fishers and the MPA authority, we set the fishing effort and selected the gear to limit fishing impact on key fish predators, juvenile fish stage, and benthic communities and habitats. Within an adaptive comanagement framework, fishers agreed to reduce fishing effort if symptoms of overfishing were detected. We analyzed the temporal trends of catch per unit of effort (CPUE) of the whole species assemblages and CPUE of the four most valuable and frequent species observed inside the opened buffer zone and outside the MPA investigated. After the comanaged opening, CPUE first declined and then stabilized at levels more than twice that of catches obtained outside the MPA. Our results suggest that working closely with fishers can result in greater fisheries catches. Partial protection of coastal areas together with adaptive comanagement involving fishers, scientists, and managers can effectively achieve conservation and fishery management goals and benefit fishing communities and alleviate overfishing.  相似文献   

13.
The optimal design of reserve networks and fisheries closures depends on species occurrence information and knowledge of how anthropogenic impacts interact with the species concerned. However, challenges in surveying mobile and cryptic species over adequate spatial and temporal scales can mask the importance of particular habitats, leading to uncertainty about which areas to protect to optimize conservation efforts. We investigated how telemetry-derived locations can help guide the scale and timing of fisheries closures with the aim of reducing threatened species bycatch. Forty juvenile speartooth sharks (Glyphis glyphis) were monitored over 22 months with implanted acoustic transmitters and an array of hydrophone receivers. Using the decision-support tool Marxan, we formulated a permanent fisheries closure that prioritized areas used more frequently by tagged sharks and considered areas perceived as having high value to fisheries. To explore how the size of the permanent closure compared with an alternative set of time-area closures (i.e., where different areas were closed to fishing at different times of year), we used a cluster analysis to group months that had similar arrangements of selected planning units (informed by shark movements during that month) into 2 time-area closures. Sharks were consistent in their timing and direction of migratory movements, but the number of tagged sharks made a big difference in the placement of the permanent closure; 30 individuals were needed to capture behavioral heterogeneity. The dry-season (May–January) and wet-season (February–April) time-area closures opened 20% and 25% more planning units to fishing, respectively, compared with the permanent closure with boundaries fixed in space and time. Our results show that telemetry has the potential to inform and improve spatial management of mobile species and that the temporal component of tracking data can be incorporated into prioritizations to reduce possible impacts of spatial closures on established fisheries.  相似文献   

14.
Freshwater protected areas are rare even though freshwater ecosystems are among the most imperiled in the world. Conservation actions within terrestrial protected areas (TPAs) such as development or resource extraction regulations may spill over to benefit freshwater ecosystems within their boundaries. Using data from 175 lakes across Ontario, Canada, we compared common indicators of fish‐assemblage status (i.e., species richness, Shannon diversity index, catch per unit effort, and normalized‐length size spectrum slopes) to evaluate whether TPAs benefit lake fish assemblages. Nearest neighbor cluster analysis was used to generate pairs of lakes: inside versus outside, inside versus bordering, and bordering versus outside TPAs based on lake characteristics. The diversity and abundance indicators did not differ significantly across comparisons, but normalized‐length size spectrum slopes (NLSS) were significantly steeper in lakes outside parks. The latter indicated assemblage differences (greater abundances of small‐bodied species) and less‐efficient energy transfer through the trophic levels of assemblages outside parks. Although not significantly different, pollution‐ and turbidity‐tolerant species were more abundant outside parks, whereas 3 of the 4 pollution‐intolerant species were more abundant within parks. Twenty‐one percent of the difference in slopes was related to higher total dissolved solids concentrations and angling pressure. Our results support the hypothesis that TPAs benefit lake fish assemblages and suggest that NLSS slopes are informative indicators for aquatic protected area evaluations because they represent compositional and functional aspects of communities.  相似文献   

15.
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost‐effectiveness of nesting site and at‐sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost‐effectiveness measures. Nesting beach protection was the most cost‐effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high‐bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low‐cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost‐effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost‐effective, particularly, if fisheries in the area are small and of little commercial value. Rentabilidad de Estrategias de Conservación Alternativas Aplicadas a Tortugas Laúd del Pacífico  相似文献   

16.
Effects of Artisanal Fishing on Caribbean Coral Reefs   总被引:6,自引:0,他引:6  
Abstract:  Although the impacts of industrial fishing are widely recognized, marine ecosystems are generally considered less threatened by artisanal fisheries. To determine how coral reef fish assemblages and benthic communities are affected by artisanal fishing, we studied six Caribbean islands on which fishing pressure ranged from virtually none in Bonaire, increasing through Saba, Puerto Rico, St Lucia, and Dominica, and reaching very high intensities in Jamaica. Using stationary-point fish counts at 5 m and 15 m depth, we counted and estimated the lengths of all noncryptic, diurnal fish species within replicate 10-m-diameter areas. We estimated percent cover of coral and algae and determined reef structural complexity. From fish numbers and lengths we calculated mean fish biomass per count for the five most commercially important families. Groupers (Serranidae), snappers (Lutjanidae), parrotfish (Scaridae), and surgeonfish (Acanthuridae) showed order-of-magnitude differences in biomass among islands. Biomass fell as fishing pressure increased. Only grunts (Haemulidae) did not follow this pattern. Within families, larger-bodied species decreased as fishing intensified. Coral cover and structural complexity were highest on little-fished islands and lowest on those most fished. By contrast, algal cover was an order of magnitude higher in Jamaica than in Bonaire. These results suggest that following the Caribbean-wide mass mortality of herbivorous sea urchins in 1983–1984 and consequent declines in grazing pressure on reefs, herbivorous fishes have not controlled algae overgrowing corals in heavily fished areas but have restricted growth in lightly fished areas. In summary, differences among islands in the structure of fish and benthic assemblages suggest that intensive artisanal fishing has transformed Caribbean reefs.  相似文献   

17.
The search for novel approaches to establishing ecological baselines (reference conditions) is constrained by the fact that most ecological studies span the past few decades, at most, and investigate ecosystems that have been substantially altered by human activities for decades, centuries, or more. Paleobiology, archeology, and history provide historical ecological context for biological conservation, remediation, and restoration. We argue that linking historical ecology explicitly with conservation can help unify related disciplines of conservation paleobiology, conservation archeobiology, and environmental history. Differences in the spatial and temporal resolution and extent (scale) of prehistoric, historic, and modern ecological data remain obstacles to integrating historical ecology and conservation biology, but the prolonged temporal extents of historical ecological data can help establish more complete baselines for restoration, document a historical range of ecological variability, and assist in determining desired future conditions. We used the eastern oyster (Crassostrea virginica) fishery of the Chesapeake Bay (U.S.A.) to demonstrate the utility of historical ecological data for elucidating oyster conservation and the need for an approach to conservation that transcends disciplinary boundaries. Historical ecological studies from the Chesapeake have documented dramatic declines (as much as 99%) in oyster abundance since the early to mid‐1800s, changes in oyster size in response to different nutrient levels from the sixteenth to nineteenth centuries, and substantial reductions in oyster accretion rates (from 10 mm/year to effectively 0 mm/year) from the Late Holocene to modern times. Better integration of different historical ecological data sets and increased collaboration between paleobiologists, geologists, archeologists, environmental historians, and ecologists to create standardized research designs and methodologies will help unify prehistoric, historic, and modern time perspectives on biological conservation. Integración de Paleobiología, Arqueología e Historia para Informar a la Biología de la Conservación  相似文献   

18.
Abstract: Captive rearing and translocation are often used concurrently for species conservation, yet the effects of these practices can interact and lead to unintended outcomes that may undermine species’ recovery efforts. Controls in translocation or artificial‐propagation programs are uncommon; thus, there have been few studies on the interacting effects of these actions and environmental conditions on survival. The Columbia River basin, which drains 668,000 km2 of the western United States and Canada, has an extensive network of hydroelectric and other dams, which impede and slow migration of anadromous Pacific salmon (Oncorhynchus spp.) and can increase mortality rates. To mitigate for hydrosystem‐induced mortality during juvenile downriver migration, tens of millions of hatchery fish are released each year and a subset of wild‐ and hatchery‐origin juveniles are translocated downstream beyond the hydropower system. We considered how the results of these practices interact with marine environmental conditions to affect the marine survival of Chinook salmon (O. tshawytscha). We analyzed data from more than 1 million individually tagged fish from 1998 through 2006 to evaluate the probability of an individual fish returning as an adult relative to its rearing (hatchery vs. wild) and translocation histories (translocated vs. in‐river migrating fish that traveled downriver through the hydropower system) and a suite of environmental variables. Except during select periods of very low river flow, marine survival of wild translocated fish was approximately two‐thirds less than survival of wild in‐river migrating fish. For hatchery fish, however, survival was roughly two times higher for translocated fish than for in‐river migrants. Competition and predator aggregation negatively affected marine survival, and the magnitude of survival depended on rearing and translocation histories and biological and physical conditions encountered during their first few weeks of residence in the ocean. Our results highlight the importance of considering the interacting effects of translocation, artificial propagation, and environmental variables on the long‐term viability of species.  相似文献   

19.
Abstract:  As in many regions of the world, marine fishes and invertebrates along the Pacific coast of the United States have long been subjected to overexploitation. Despite this history, however, we lack basic information on the current status of many fishes along this coastline. We used data from a quarter century of fishery-independent, coast-wide trawl surveys to study systematically the demersal fish assemblages along the U.S. Pacific coast. We documented fundamental shifts in this fish assemblage. Average fish size, across a diversity of species, has declined 45% in 21 years. There have been major shifts in the constituent species of the assemblage, with some species achieving annual population growth rates of >10% and others declining in excess of 10% per year. Annual rate of change in population size appeared to be a function of life history interacting with fishing pressure. Negative trends in population size were particularly apparent in rockfish ( Sebastes spp.). However, across all taxa examined, trends in population size were associated with size of maturity, maximum size, and growth rate. Trends in population size were associated inversely with harvest levels, but stocks that mature late tended to decline faster than would be predicted by catch rates alone. Our results are disquieting because they raise the possibility that fishing-induced phase shifts in fish communities may affect the recovery of fishes, even after the implementation of severe fishing restrictions.  相似文献   

20.
Many believe commercial fisheries in Alaska (U.S.A.) are sustainability success stories, but ongoing socioeconomic problems across the state raise questions about how this sustainability is being defined and evaluated. Problems such as food insecurity and the disenfranchisement of Alaska Natives from fishing rights are well documented, yet these concerns are obscured by marketing campaigns that convey images of flourishing fishing communities and initiatives to certify Alaska's fisheries as responsibly managed. Fisheries management mandates and approaches built on such metrics and technologies as maximum sustainable yield and systems of tradable quotas actually serve to constrain, circumscribe, and marginalize some Alaskans’ opportunities for effecting change in how the benefits of these fisheries are allocated. Beneath the narrative of sustainability, these management technologies perpetuate a cognitive ecological model of sustainability that is oriented to single‐species outcomes, that casts people as parasites, and thus assumes the necessity of trade‐offs between biological and social goals. Alternative cognitive models are available that draw metaphors from different ecological concepts such as keystone species and mutualisms. Such models, when used to inform management approaches, may improve societal outcomes in Alaska and elsewhere by promoting food security and sustainability through diversified natural resource harvest strategies that are more flexible and responsive to environmental variability and change. Perspectivas Alternativas sobre la Sustentabilidad de las Pesquerías Comerciales en Alaska  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号