首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for novel approaches to establishing ecological baselines (reference conditions) is constrained by the fact that most ecological studies span the past few decades, at most, and investigate ecosystems that have been substantially altered by human activities for decades, centuries, or more. Paleobiology, archeology, and history provide historical ecological context for biological conservation, remediation, and restoration. We argue that linking historical ecology explicitly with conservation can help unify related disciplines of conservation paleobiology, conservation archeobiology, and environmental history. Differences in the spatial and temporal resolution and extent (scale) of prehistoric, historic, and modern ecological data remain obstacles to integrating historical ecology and conservation biology, but the prolonged temporal extents of historical ecological data can help establish more complete baselines for restoration, document a historical range of ecological variability, and assist in determining desired future conditions. We used the eastern oyster (Crassostrea virginica) fishery of the Chesapeake Bay (U.S.A.) to demonstrate the utility of historical ecological data for elucidating oyster conservation and the need for an approach to conservation that transcends disciplinary boundaries. Historical ecological studies from the Chesapeake have documented dramatic declines (as much as 99%) in oyster abundance since the early to mid‐1800s, changes in oyster size in response to different nutrient levels from the sixteenth to nineteenth centuries, and substantial reductions in oyster accretion rates (from 10 mm/year to effectively 0 mm/year) from the Late Holocene to modern times. Better integration of different historical ecological data sets and increased collaboration between paleobiologists, geologists, archeologists, environmental historians, and ecologists to create standardized research designs and methodologies will help unify prehistoric, historic, and modern time perspectives on biological conservation. Integración de Paleobiología, Arqueología e Historia para Informar a la Biología de la Conservación  相似文献   

2.
The human communities and ecosystems of island and coastal southeast Africa face significant and linked ecological threats. Socioecological conditions of concern to communities, governments, nongovernmental organizations, and researchers include declining agricultural productivity, deforestation, introductions of non-native flora and fauna, coastal erosion and sedimentation, damage to marine environments, illegal fishing, overfishing, waste pollution, salinization of freshwater supplies, and rising energy demands, among others. Human–environment challenges are connected to longer, often ignored, histories of social and ecological dynamics in the region. We argue that these challenges are more effectively understood and addressed within a longer-term historical ecology framework. We reviewed cases from Madagascar, coastal Kenya, and the Zanzibar Archipelago of fisheries, deforestation, and management of human waste to encourage increased engagement among historical ecologists, conservation scientists, and policy makers. These case studies demonstrate that by widening the types and time depths of data sets we used to investigate and address current socioecological challenges, our interpretations of their causes and strategies for their mitigation varied significantly.  相似文献   

3.
Abstract: The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology‐disrupted approach to transform the topics of conservation biology research into environmental‐issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.  相似文献   

4.
Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award‐winning restoration projects in Australasia and worldwide; and in the peer‐reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award‐winning ecological restoration projects, <17% involved human use of restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support.  相似文献   

5.
6.
When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster‐relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. Detección del Cambio Ecológico Rápido por la Población Indígena  相似文献   

7.
Abstract: The rapidity of climate change is predicted to exceed the ability of many species to adapt or to disperse to more climatically favorable surroundings. Conservation of these species may require managed relocation (also called assisted migration or assisted colonization) of individuals to locations where the probability of their future persistence may be higher. The history of non‐native species throughout the world suggests managed relocation may not be applicable universally. Given the constrained existence of freshwater organisms within highly dendritic networks containing isolated ponds, lakes, and rivers, managed relocation may represent a useful conservation strategy. Yet, these same distinctive properties of freshwater ecosystems may increase the probability of unintended ecological consequences. We explored whether managed relocation is an ecologically sound conservation strategy for freshwater systems and provided guidelines for identifying candidates and localities for managed relocation. A comparison of ecological and life‐history traits of freshwater animals associated with high probabilities of extirpation and invasion suggests that it is possible to select species for managed relocation to minimize the likelihood of unintended effects to recipient ecosystems. We recommend that translocations occur within the species’ historical range and optimally within the same major river basin and that lacustrine and riverine species be translocated to physically isolated seepage lakes and upstream of natural or artificial barriers, respectively, to lower the risk of secondary spread across the landscape. We provide five core recommendations to enhance the scientific basis of guidelines for managed relocation in freshwater environments: adopt the term managed translocation to reflect the fact that individuals will not always be reintroduced within their historical native range; examine the trade‐off between facilitation of individual movement and the probability of range expansion of non‐native species; determine which species and locations might be immediately considered for managed translocation; adopt a hypothetico‐deductive framework by conducting experimental trials to introduce species of conservation concern into new areas within their historical range; build on previous research associated with species reintroductions through communication and synthesis of case studies.  相似文献   

8.
For more than half a century, ecologists and historians have been integrating the contemporary study of ecosystems with data gathered from historical sources to evaluate change over broad temporal and spatial scales. This approach is especially useful where ecosystems were altered before formal study as a result of natural resources management, land development, environmental pollution, and climate change. Yet, in many places, historical documents do not provide precise information, and pre-historical evidence is unavailable or has ambiguous interpretation. There are similar challenges in evaluating how the fire regime of chaparral in California has changed as a result of fire suppression management initiated at the beginning of the 20th century. Although the firestorm of October 2003 was the largest officially recorded in California (approximately 300,000 ha), historical accounts of pre-suppression wildfires have been cited as evidence that such a scale of burning was not unprecedented, suggesting the fire regime and patch mosaic in chaparral have not substantially changed. We find that the data do not support pre-suppression megafires, and that the impression of large historical wildfires is a result of imprecision and inaccuracy in the original reports, as well as a parlance that is beset with hyperbole. We underscore themes of importance for critically analyzing historical documents to evaluate ecological change. A putative 100 mile long by 10 mile wide (160 x 16 km) wildfire reported in 1889 was reconstructed to an area of chaparral approximately 40 times smaller by linking local accounts to property tax records, voter registration rolls, claimed insurance, and place names mapped with a geographical information system (GIS) which includes data from historical vegetation surveys. We also show that historical sources cited as evidence of other large chaparral wildfires are either demonstrably inaccurate or provide anecdotal information that is immaterial in the appraisal of pre-suppression fire size. Since historical evidence is inadequate for reconstructing a statistical distribution of pre-suppression fire sizes to compare with post-suppression data, other more propitious methods of evaluating change are discussed.  相似文献   

9.
Abstract: We believe that the language commonly used in teaching actually hinders the creation of conservation literacy. We examined four frequently used ecology and environmental studies textbooks and considered the ways in which commonly used language can obscure or enhance an understanding of ecology and conservation. Specifically, we used the Sapir–Whorf hypothesis (a.k.a. linguistic relativity) and framing theory to examine the approaches reflected in three elements of the texts: introductions and treatment of two key ecological concepts (matter cycling and energy). Language used in the texts contained implicit metaphors that portrayed nature as a resource; resisted ecological realities, such as the finite nature of matter and the loss of energy with each transformation; and fundamentally served to separate humans from nature. Although the basis of conservation literacy is understanding of the complexity of ecological systems, culturally based communication as exemplified in these texts does not encourage students or educators to recognize the feedback loops that clarify human membership in the ecosystem. Consequently, the language used to teach ecology perpetuates the idea that humans exist outside of its laws. With this paper, we hope to initiate a dialogue about how to retool the language used in teaching and communicating about ecology such that it resonates with, rather than undermines, conservation.  相似文献   

10.
How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to efficiently solve spatially explicit ecological models at large spatial scale using the CUDA language extension. We explain this technique by implementing three classical models of spatial self-organization in ecology: a spiral-wave forming predator-prey model, a model of pattern formation in arid vegetation, and a model of disturbance in mussel beds on rocky shores. Using these models, we show that the solutions of models on large spatial grids can be obtained on graphics processors with up to two orders of magnitude reduction in simulation time relative to normal pc processors. This allows for efficient simulation of very large spatial grids, which is crucial for, for instance, the study of the effect of spatial heterogeneity on the formation of self-organized spatial patterns, thereby facilitating the comparison between theoretical results and empirical data. Finally, we show that large-scale spatial simulations are preferable over repetitions at smaller spatial scales in identifying the presence of scaling relations in spatially self-organized ecosystems. Hence, the study of scaling laws in ecology may benefit significantly from implementation of ecological models on graphics processors.  相似文献   

11.
Non‐native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non‐native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non‐native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non‐native species; help disentangle which aspects of scientific debates about non‐native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio‐economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No‐Nativas  相似文献   

12.
Abstract: The economic valuation of ecosystem services is a key policy tool in stemming losses of biological diversity. It is proposed that the loss of ecosystem function and the biological resources within ecosystems is due in part to the failure of markets to recognize the benefits humans derive from ecosystems. Placing monetary values on ecosystem services is often suggested as a necessary step in correcting such market failures. We consider the effects of valuing different types of ecosystem services within an economic framework. We argue that provisioning and regulating ecosystem services are generally produced and consumed in ways that make them amenable to economic valuation. The values associated with cultural ecosystem services lie outside the domain of economic valuation, but their worth may be expressed through noneconomic, deliberative forms of valuation. We argue that supporting ecosystem services are not of direct value and that the losses of such services can be expressed in terms of the effects of their loss on the risk to the provision of the directly valued ecosystem services they support. We propose a heuristic framework that considers the relations between ecological risks and returns in the provision of ecosystem services. The proposed ecosystem‐service valuation framework, which allows the expression of the value of all types of ecosystem services, calls for a shift from static, purely monetary valuation toward the consideration of trade‐offs between the current flow of benefits from ecosystems and the ability of those ecosystems to provide future flows.  相似文献   

13.
Abstract: Crayfishes are both a highly imperiled invertebrate group as well as one that has produced many invasive species, which have negatively affected freshwater ecosystems throughout the world. We performed a trait analysis for 77 crayfishes from the southeastern United States in an attempt to understand which biological and ecological traits make these species prone to imperilment or invasion, and to predict which species may face extinction or become invasive in the future. We evaluated biological and ecological traits with principal coordinate analysis and classification trees. Invasive and imperiled crayfishes occupied different positions in multivariate trait space, although crayfishes invasive at different scales (extraregional vs. extralimital) were also distinct. Extraregional crayfishes (large, high fecundity, habitat generalists) were most distinct from imperiled crayfishes (small, low fecundity, habitat specialists), thus supporting the “two sides of the same coin” hypothesis. Correct classification rates for assignment of crayfishes as invasive or imperiled were high (70–80%), even when excluding the highly predictive but potentially confounding trait of range size (75–90%). We identified a number of species that, although not currently listed as imperiled or found outside their native range, possess many of the life‐history and ecological traits characteristic of currently invasive or imperiled taxa. Such species exhibit a high latent risk of extinction or invasion and consequently should be the focus of proactive conservation or management strategies. Our results illustrate the utility of trait‐based approaches for taxonomic groups such as invertebrates, for which detailed species‐specific data are rare and conservation resources are chronically limited.  相似文献   

14.
Keeping track of conceptual and methodological developments is a critical skill for research scientists, but this task is increasingly difficult due to the high rate of academic publication. As a crisis discipline, conservation science is particularly in need of tools that facilitate rapid yet insightful synthesis. We show how a common text‐mining method (latent Dirichlet allocation, or topic modeling) and statistical tests familiar to ecologists (cluster analysis, regression, and network analysis) can be used to investigate trends and identify potential research gaps in the scientific literature. We tested these methods on the literature on ecological surrogates and indicators. Analysis of topic popularity within this corpus showed a strong emphasis on monitoring and management of fragmented ecosystems, while analysis of research gaps suggested a greater role for genetic surrogates and indicators. Our results show that automated text analysis methods need to be used with care, but can provide information that is complementary to that given by systematic reviews and meta‐analyses, increasing scientists’ capacity for research synthesis.  相似文献   

15.
The thesis is presented that classical taxonomy is of limited value to ecosystem science, and that the further development of ecosystem theory may actually be hindered by a reliance on the biological (phylogenetic) species as the basic functional unit of ecosystems. It is further argued that this situation could be improved if ecologists could agree on a system of functional classification in which ecological taxa would be distinguished solely on the basis of what they do in the context of an ecosystem, and not on their evolutionary relationships.A functional classification system is proposed in which functional taxa for specific ecosystems (ecological sectors) are defined as broad trophic groups of organisms in common vertical habitat zones, and with common inputs and outputs (ecosystem commodities and services). This system is envisioned as potentially useful in the development of comparative ecosystem theory, for constructing simulation models, for ongoing research in economic versus ecological values, and for cataloging new functional information as it becomes available.The proposed system is tentatively applied to the salt marsh estuarine ecosystem in the southeastern U.S.A. and to the swampforest ecosystem in Louisiana (U.S.A.). Twenty-five sectors are identified in the former and twenty in the latter.“It is by endless subdivisions based upon the most inconclusive differences, that some departments of natural history become so repellingly intricate”. Melville (1851), Moby Dick.  相似文献   

16.
Many of the challenges conservation professionals face can be framed as scale mismatches. The problem of scale mismatch occurs when the planning for and implementation of conservation actions is at a scale that does not reflect the scale of the conservation problem. The challenges in conservation planning related to scale mismatch include ecosystem or ecological process transcendence of governance boundaries; limited availability of fine‐resolution data; lack of operational capacity for implementation; lack of understanding of social‐ecological system components; threats to ecological diversity that operate at diverse spatial and temporal scales; mismatch between funding and the long‐term nature of ecological processes; rate of action implementation that does not reflect the rate of change of the ecological system; lack of appropriate indicators for monitoring activities; and occurrence of ecological change at scales smaller or larger than the scale of implementation or monitoring. Not recognizing and accounting for these challenges when planning for conservation can result in actions that do not address the multiscale nature of conservation problems and that do not achieve conservation objectives. Social networks link organizations and individuals across space and time and determine the scale of conservation actions; thus, an understanding of the social networks associated with conservation planning will help determine the potential for implementing conservation actions at the required scales. Social‐network analyses can be used to explore whether these networks constrain or enable key social processes and how multiple scales of action are linked. Results of network analyses can be used to mitigate scale mismatches in assessing, planning, implementing, and monitoring conservation projects. Discordancia de Escalas, Planificación de la Conservación y el Valor del Análisis de Redes Sociales  相似文献   

17.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   

18.
Abstract:  Salt marsh ecosystems are widely considered to be controlled exclusively by bottom–up forces, but there is mounting evidence that human disturbances are triggering consumer control in western Atlantic salt marshes, often with catastrophic consequences. In other marine ecosystems, human disturbances routinely dampen (e.g., coral reefs, sea grass beds) and strengthen (e.g., kelps) consumer control, but current marsh theory predicts little potential interaction between humans and marsh consumers. Thus, human modification of top–down control in salt marshes was not anticipated and was even discounted in current marsh theory, despite loud warnings about the potential for cascading human impacts from work in other marine ecosystems. In spite of recent experiments that have challenged established marsh dogma and demonstrated consumer-driven die-off of salt marsh ecosystems, government agencies and nongovernmental organizations continue to manage marsh die-offs under the old theoretical framework and only consider bottom–up forces as causal agents. This intellectual dependency of many coastal ecologists and managers on system-specific theory (i.e., marsh bottom–up theory) has the potential to have grave repercussions for coastal ecosystem management and conservation in the face of increasing human threats. We stress that marine vascular plant communities (salt marshes, sea grass beds, mangroves) are likely more vulnerable to runaway grazing and consumer-driven collapse than is currently recognized by theory, particularly in low-diversity ecosystems like Atlantic salt marshes.  相似文献   

19.
Abstract:  Ecological research and biodiversity management often raise ethical questions in areas that include responsibilities and duties to the scientific community, public welfare, research animals, species, and ecosystems. Answering these questions is challenging because ecologists and biodiversity managers do not have the equivalent of bioethics, an established field with a support network focused mainly on biomedicine, to guide them in making decisions. Environmental ethics provides some insight into environmental values and the duties these may impose on humans. But for the most part those in the field have not considered many of the common responsibilities and obligations that ecologists and managers have to the scientific profession or to public welfare. There is a need to bring ethicists, scientists, and biodiversity managers together in a collaborative effort to study and inform the methods of ethical analysis and problem solving in ecological research and biodiversity management. We present a series of cases that illustrate the kinds of ethical questions faced by researchers and biodiversity managers in practice. We argue for the creation of an extensive case database and a pluralistic and integrated ethical framework, one that draws from the theoretical (normative), research, animal, and environmental ethics traditions. These tools form the foundations of a new area of inquiry and practical ethical problem solving, that we call "ecological ethics."  相似文献   

20.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号