首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
本研究采用上流式厌氧污泥床滤层反应器对蛋鸡场鸡粪混合液离心出水进行处理,试验结果:在中温25℃,进水COD_(cr)18000mg/L和氨氮1600mg/L的条件下,COD_(cr)去除率74.08%,BOD_5去除率83.78%,水力停留时间26.15h,容积负荷15.60kg·COD_(cr)/m~3·d,产气率0.52m~3/去除km·COD_(cr).反应器运行状况良好.  相似文献   

2.
针对印染废水中COD_(cr)值日渐增高,BOD_5/COD_(cr)值日渐降低的趋势,为改善生化法处理印染废水水质条件,降低生化处理负荷,提高水质可生化性能,本文以不同水质编制试验方案,以探求最佳工艺特点,COD_(cr)值与投药量关系,絮凝前后水质可生化性能变化趋势。试验结果证实:化学絮凝法处理中长纤维染色废水,对降低水质COD_(cr)值、脱色、改善水质可生化性能是行之有效的。  相似文献   

3.
研究结果表明,以凤眼莲为主的半人工水生生态系统对缫丝废水具有较好的强化净化作用,对该废水中的TSS的去除率为95.7%,COD_(cr)为92.0%,BOD_5为96.6%,总氮(TN)为85.6%,NH_4~+—N为79.8%,总磷(TP)为86.6%,PO_4~(3-)—P为88.7%,出水已达到无公害排放。从处理沟中收获的凤眼莲作为青饲料养鱼亦取得显著效益,从而使环境效益、经济效益和社会效益得到较好的统一。最后,对该生态系统实施和管理中的若干技术关键进行了初步探讨。  相似文献   

4.
集约化蛋鸡场鸡粪混合液资源化无害化处理   总被引:3,自引:0,他引:3  
本研究采用离心分离法、高温好氧发酵法和中温厌氧发酵对鸡粪混合液进行资源化、无害化综合处理。实验结果:鸡粪回收率53.0%~91.8%;发酵后,鸡粪含水率31%~44%;废水厌氧处理的体积负荷12.14kg·COD_(cr)/m~3·d;产沼比0.52m~3/kg·COD_(cr);甲烷含量>70%。通过综合处理,COD_cr)、BOD_5的总去除率均大于90%。实验表明,本工艺具有投资少、能耗低、费用省和效益比较明显等优点。  相似文献   

5.
本文研究了在自然状况下污水塘的净化作用及其效率,通过对总氮、总磷、COD_(Cr)和BOD_5等在进、出水中的含量与水温进行回归分析,建立了三者之间的相关性方程。同时讨论了水温对污水塘的自净效率的影响。  相似文献   

6.
印染废水脱色新方法的研究   总被引:7,自引:0,他引:7  
本文报道了用复极性粒子群电极进行可溶性染料废水脱色新方法的研究。用此方法可使浓度高达100—400ppm的染料液(阳离子艳蓝、活性艳红、直接嫩黄、弱酸红、亚甲基蓝等)的脱色率达99%以上,可使含有直接、活性、阳离子、酸性等各类染料的高色度混合溶液处理到近于无色透明,COD_(cr)与BOD_5的去除率达80%以上。实验说明,本法具有高效能,低能耗、使用寿命长、再生容易的特点。  相似文献   

7.
工(产)业园区内企业在紧急情况下排放的污水中,有毒物质会影响污水处理厂活性污泥微生物的活性,甚至导致微生物的死亡.基于此,利用CASS工艺的特点检验微生物系统抗冲击毒性的能力,通过不同的配比浓度调整试验水样中Cu~(2+)、Ni~(2+)的质量浓度,监测CASS系统进出水的Cu~(2+)、Ni~(2+)、COD_(cr)指标,用以判断微生物系统是否受到影响,进而确定CASS微生物系统抗毒性冲击的临界点.结果表明:Cu~(2+)质量浓度小于3.0 mg·L~(-1),Ni~(2+)质量浓度小于5.0 mg·L~(-1),时,CASS 工艺微生物抵抗含Cu~(2+)、Ni~(2+)锻造添加剂废水的毒性能力较强,对Cu~(2+)、Ni~(2+)、COD_(cr)的去除率均可以达到80%;当Cu~(2+)质量浓度大于3.0 mg·L~(-1),Ni~(2+)质量浓度大于5.0mg·L~(-1)时,CASS工艺微生物对毒性抵抗能力显著降低,活性受到严重破坏,对CU~(2+)、Ni~(2+)、COD_(cr)去除率下降至60%以下.所以可以确定CASS工艺微生物抵抗含Cu~(2+)、Ni~(2+)锻造添加剂废水毒性的最高质量浓度限值,Cu~(2+)为3.0 mg·L~(-1),Ni~(2+)为5.0mg·L~(-1).为污水处理厂实际运行工程中避免活性污泥微生物系统受毒性冲击而导致运行瘫痪提供参考依据.  相似文献   

8.
人工景观生态湖滨净化带植物的遴选   总被引:2,自引:0,他引:2  
对水生植物处理生活污水的效果等展开了一些初步的研究。利用盆栽试验,比较了香蒲、美人蕉等8种水生植物的净化效果,所选的8种植物对污水均有不同程度的去除效果。挺水植物对污水的净化效果和耐污能力均优于沉水植物。利用水生植物处理生活污水,5 d的停留时间可以使污水达到较好的去除效果。挺水植物中美人蕉和水竹对污水的净化效果比香蒲和灯心草更好;沉水植物中伊乐藻的净化效果最好。植物对污水的净化效率有明显的季节差异,冬季污水净化效率低于夏秋两季,沉水植物在不同季节脱氮除磷效果有显著的差异。  相似文献   

9.
两种复合人工湿地系统对东莞运河污水的净化效果   总被引:4,自引:0,他引:4  
复合人工湿地系统是将不同类型的人工湿地相组合,充分发挥各类型湿地特长,实现优势瓦补的一种更有效的污水净化系统.研究采用复合垂直流-水平潜流人工湿地和复合垂直下行流人工湿地两种复合人工湿地系统对东莞运河的河道污水进行处理,分别监测了两套不同复合人工湿地系统第一、二级湿地单元的出水情况,研究了不同时间段和一定的水力负荷下复合人工湿地系统对河道污水的净化效果.结果表明,两种复合人工湿地系统的二级湿地单元出水各指标明显优于一级湿地单元,复合垂直流-水平潜流湿地对东莞运河污水COD、BOD_5和TP的平均去除率分别达到70.52%、69.21%和55.56%;复合垂直下行流湿地系统对TP的净化尤其突出,平均去除率达到72.62%,二级出水的质量浓度在0.10~0.60 mg·L~(-1)之间,对COD和BOD_5的平均去除率分别为64.74%和60.63%.两种复合系统的出水浓度均达到<城市污水处理厂污染物排放标准>(GB 18918-2002)中的一级标准.由此可见,两种复合人工湿地系统对各污染物去除效果明显优于单一的湿地系统,且更具稳定性和耐冲击能力.  相似文献   

10.
天然沸石床处理受污染景观水体的试验   总被引:2,自引:0,他引:2  
采用天然沸石滤床对富营养化景观湖水进行净化试验,结果表明,天然沸石滤床能有效地净化受污染的湖水,CODCr、氨氮、总磷和浊度的去除率分别为35.8%、95.0%、66.7%和78.0%,沸石能有效地去除水中的氨氮,其作用机理包括离子交换和生物硝化两种作用。  相似文献   

11.
风车草对生活污水的净化效果及其在人工湿地的应用   总被引:40,自引:0,他引:40  
研究了风车划(Cyerus alternifolius)的生长特性和对生活污水的净化效果。风车草全年保持生长,即使在冬天仍能维持一定的生长速率。风车草在生活污水中培养10d后,污水中TN、TP、COD和BOD的去除率分别达到91%、92%、70%和73%,其中风车草对N、P的吸收量分别占净化量的55%和53%。种植风车草的潜流型人工湿地对TN、TP、COD和BOD的去除率分别为64%、47%、74%和74%,与不种植物的人工湿地相比,TN、TP、COD和BOD的去除率分别提高了28%、19%、14%和13%。图2表3参12  相似文献   

12.
菰和菖蒲在污水中的生长特性及其净化效果比较   总被引:9,自引:0,他引:9  
通过漂浮栽植菰(Zizania latifolia)和菖蒲(Acoruscalamus),研究了它们在低、中、高3种浓度污水中的生长特性及其对这3种浓度污水的净化效果.结果表明,菰和菖蒲均在中浓度污水中生长最好.菰在中浓度污水中的生物量显著高于低浓度和高浓度中;菖蒲在中浓度污水中的生物量略高于低浓度和高浓度中,但差异不显著.菰对中浓度污水中TN、NH3-N、TP和CODCr的去除率分别为97.4%、95.3%、98.5%和71.4%,对高浓度污水中TN、NH3-N、TP和CODCr的去除率分别为96.4%、97.7%、88.2%和76.1%,净化效果均显著高于低浓度中.菰可作为中、高浓度污水的净化植物.菖蒲净化中浓度污水的效果最好,对TN、NH3-N、TP和CODCr的去除率分别为97.5%、94.1%、98.5%和72.7%;对高浓度污水中的NH3-N和CODCr去除效果也较好,去除率分别为97.8%和86.7%,但对TN和TP的去除率分别为89.5%和70.9%,显著低于对低浓度和中浓度污水中TN和TP的去除率.图1表4参13  相似文献   

13.
人工湿地不同基质对氨氮的吸附特性研究   总被引:3,自引:0,他引:3  
过量氮是引发水体富营养化的重要原因之一,氮的去除是控制水体富营养化的关键,其中人工湿地中基质对氨氮的去除是人工湿地处理污水的重要途径。通过基质氨氮吸附动力学、等温吸附以及基质饱和吸附后氨氮解吸实验,研究沸石、红泥、水洗砂、炉渣4种人工湿地基质净化氨氮的效果,评价其饱和吸附后氨氮解吸可能造成的二次污染风险及基质去除氨氮的主要途径。结果表明:4种基质对氨氮的吸附量顺序依次为沸石〉红泥〉炉渣〉水洗砂;沸石去除氨氮的途径以离子交换为主,物理吸附作用很小;炉渣的离子交换作用和物理吸附作用效果相当。从氨氮的解吸率来看,沸石的解吸率最小,红泥次之,炉渣和水洗砂的解吸率较大。综合评价,沸石更适合作为人工湿地污水去除氨氮的基质。  相似文献   

14.
天然沸石对农田退水中氨氮的去除   总被引:1,自引:0,他引:1  
张翠玲  常青  张家利  高彩丽 《环境化学》2012,31(7):1063-1068
利用静态吸附实验研究了沸石颗粒大小、氨氮初始浓度、接触时间及Na+离子浓度等因素对天然白银沸石去除模拟黄灌区农田退水中氨氮(NH4+-N)效果的影响,同时研究了吸附等温线特征,并考察了其吸附机理.研究结果表明,沸石颗粒大小、接触时间及NH4+和Na+初始浓度对NH4+-N交换容量都会产生一定影响;根据复相关系数(R2),NH4+-N的吸附等温线更符合三参数等温线模型;而对于两参数等温线模型,Langmuir模型比Freundlich模型能更好地描述NH4+-N在天然沸石上的离子交换过程;NH4+-N吸附实验数据与Elovich模型拟合最好(R2≥0.9766).研究结果表明了天然白银沸石是一种适合NH4+-N去除的离子交换剂,可用于黄灌区农田退水中NH4+-N的去除.  相似文献   

15.
刘振英  刘亦洋  史萌  高雄 《生态环境》2010,19(5):1050-1053
以水解酸化为预处理手段,利用自主设计的水解酸化柱为处理设备,处理光学工业生产废水。通过分析光学工业生产废水的水质了解到:该废水BOD5/CODCr〉0.3,可以采用生物的方法处理废水,但是考虑到BOD5/CODCr值较低,而该废水中又含有大量的高分子有机物,直接利用好氧生物降解的方法效果不明显,为提高其生物降解性能,使用水解酸化为前处理手段。通过近一个月的启动试验,水解酸化反应器出水稳定,CODCr去除率达到45%左右。以废水中CODCr去除率和酸化率为分析指标,确定水解酸化反应体系的最佳适用条件,试验结果表明:pH值为6.5~7.5,水力停留时间为8~10h时,废水CODCr去除率和酸化率较高。设定pH值为7、水力停留时间为8h的试验条件,比较进、出水BOD5/CODCr的试验结果变化可知:经水解酸化预处理后,该废水的可生化性提高了近一倍左右,水解酸化预处理效果明显,该预处理方法改善了光学工业生产废水的可生化降解性能。  相似文献   

16.
对自行研制的多孔柔性载体在非流化状态下,处理低浓度有机污水的效能及生物活性进行了试验,结果表明:污水经处理后,检测指标CODCr去除率80%以上,BOD5去除率90%以上;多孔柔性载体表面附着生物活性较高,可作为良好的生物载体。  相似文献   

17.
主要原材料为高炉矿渣的碱矿渣胶凝材料(HAS)、掺3%沸石的HAS、掺5%沸石的HAS、水泥等4种固化材料被用来固化人工合成含铅、镉、铬等重金属的污泥。污泥固化体中污泥与固化材的掺和比例为4:1。实验结果表明,HAS固化剂对重金属污泥的固化效果要好于水泥,其污泥固化体的无侧限抗压强度高于水泥固化体,同时其固化体的重金属浸出量明显低于水泥。沸石的掺入使HAS固化体的重金属浸出量减小,且随着沸石掺加量的增大,HAS固化体的重金属浸出量相应的减少。  相似文献   

18.
不同植物人工湿地对污水的净化效果   总被引:4,自引:3,他引:1  
通过对栽种芦苇(Phragmites australis)、香蒲(Typha latifolia)和菖蒲(Acorus calamus)3种植物的潜流人工湿地进行试验研究,分析3种植物对污水的净化效果,及在不同水力停留时间下的变化规律.试验结果表明,在最佳运行条件下,COD、TN、TP的去除率分别在50%、75%和65%以上;3种植物对比可以看出,香蒲的净化效果明显好于芦苇和菖蒲,香蒲对COD、TN、TP的去除率分别达到67.2%、89.7%、88.9%.  相似文献   

19.
人工湿地中沸石对铵吸附能力的生物再生研究   总被引:6,自引:0,他引:6  
利用铵吸附饱和的天然斜发沸石和沙质土壤作为基质,构建了沸石柱和芦苇、菖蒲沸石人工湿地试验系统,采用曝气供氧、自然复氧、植物根系输氧以及培养系统中基质上的硝化菌群的方法,研究了铵吸附饱和的沸石在沸石柱和湿地中的生物再生过程。结果显示,沸石在湿地中再生过程符合指数模拟,在试验周期内沸石在沸石柱中再生可以用指数和线性模拟。沸石在湿地系统和沸石柱中经过1个月的再生,交换容量分别恢复到了原来的60.3%~62.6%和11.8%,3个月后分别恢复到了原来的94.6%~94.8%和38.4%。试验证明,沸石在湿地中再生比在沸石柱中再生效果好,交换容量恢复率高出约50%~63%。根据试验结果,探讨了铵吸附饱和的沸石在人工湿地中的生物再生机理,证明了饱和沸石在湿地中生物再生的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号