首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nitrogen regeneration by the surf zone penaeid prawn Macropetasma africanus   总被引:1,自引:0,他引:1  
Nitrogen excretion of individual Macropetasma africanus (Balss) from an exposed beach/surf zone in Algoa Bay, South Africa was monitored under laboratory and field conditions in relation to body mass, temperature and feeding during 1985. Excretion rate experiments were performed on starved prawns at 15°, 18°, 20° and 25°C, as well as on individuals fed on four different diets (mussel, fish, shrimp and natural diet) at 15° and 20°C. The ratios of the excreted compounds to total nitrogen excreted were similar for the four diets despite differences in their nitrogen content and in the amount of food consumed. At 15° and 20°C, ammonia excretion rates of fed individuals were four to seven times higher than in starved prawns. the excretion rates were not correlated with nitrogen content of diets. M. africanus recycles 1 557 g NH4–N per metre strip per year or 1 832 g total nitrogen m-1 yr-1, which constitute 12 and 14%, respectively, of total phytoplankton requirements of the surf zone. This study indicates that large motile crustaceans, when abundant, can play an important role in nutrient recycling in turbulent marine environments.  相似文献   

2.
Nitrogen regeneration by two surf zone mysids,Mesopodopsis slabberi andGastrosaccus psammodytes, was determined under laboratory conditions. The mysids were collected from the lower Sundays River estuary, South Africa, from early spring 1984 to late summer 1985. The forms of nitrogen excreted and the effects of mass, temperature and feeding on excretion rate were determined for each species at three experimental temperatures. Comparison of the forms of nitrogen excreted revealed only slight differences between species, with ammonia the major form and urea and amino acids the secondary excretory products in both cases. Mass significantly influenced the rate of ammonia excretion at all experimental temperatures, with no significant difference in slope (common b=0.602) detected between species. During the day sediment deprivation resulted in a 15% and 20% increase in mean ammonia excretion rates of juvenile and adultG. psammodytes respectively, whereas no significant differences were found at night. The mean ammonia excretion rates of fedM. slabberi andG. psammodytes were 2 and 2.5 times higher than starved excretion rates, respectively.G. psammodytes andM. slabberi recycle 139 to 150 g N per running meter of surf zone per year and 1 007 to 1 208 g N m-1 yr-1, respectively. Togehter this constitutes 10% of total phytoplankton nitrogen requirements in the surf zone.  相似文献   

3.
Ammonia excretion of individual Crangon franciscorum Stimpson was monitored in response to ingestion of single meals. The three experimental diets were tubificids, mysids and fish. Ammonia excretion was also monitored for individual shrimp which had been starved. The rate of ammonia excretion was higher for fed than for starved individuals in all cases. Ammonia excretion rates were higher for shrimp which were fed tubificids than those fed the other diets. The rate of excretion was influenced by both weight of the individual and the amount ingested of each diet. Ammonia excretion was influenced by dietary factors other than nitrogen content of the diet or the quantity ingested. The data suggest that field estimates of ammonia excretion based on the excretion rates of starved animals may be underestimates. The recent feeding history of an organism influences the rate of ammonia excretion as well as the relationship between the rate of excretion and weight.  相似文献   

4.
Energy budget is one of the most studied parameters in aquatic animals under environmental challenge. To examine how prolonged starvation would affect their energy budget, respiration rate (RR), ammonia excretion rate (ER), oxygen consumption to ammonia–nitrogen excretion (O:N) ratio and scope for growth (SfG) representing the balance between energy intake and metabolic output, two Asian horseshoe crab species, Tachypleus tridentatus and Carcinoscorpius rotundicauda, were investigated in two feeding regimes (fed and starved) over a period of 7 weeks. No significant effects of species and time course, as well as their interaction, on absorption efficiency were observed in the fed treatments. For both species, RR and ER of the starved treatments significantly decreased, while their O:N ratio significantly increased during the experiment. However, such values for the fed treatments remained relatively stable over the study period. A rapid reduction in SfG was only apparent in the first week of the starved treatments for both species; thereafter, their SfG remained relatively constant. In the fed treatments, SfG of T. tridentatus was significantly lower than that of C. rotundicauda throughout the experiment. In general, C. rotundicauda showed a greater decrease in SfG under starvation than T. tridentatus, suggesting that they may have a more competitive life-history strategy for adjusting to poor nutritional conditions.  相似文献   

5.
T. Ikeda 《Marine Biology》1977,41(3):241-252
Herbivorous zooplankton species (Calanus plumchrus, Paracalanus parvus and Euphausia pacifica) and carnivorous species (Parathemisto pacifica and Pleurobrachia pileus) collected from Saanich Inlet, British Columbia, Canada, were maintained in the laboratory under fed and starved conditions. Respiration rate and excretion rates of ammonia and inorganic phosphate were measured successively on the same batch populations of each species in different feeding conditions. Respiration rate remained at a constant level or increased during the feeding experiment but decreased progressively in starved individuals. Herbivorous, but not carnivorous, species showed a rapid decrease in both excretion rates for the first few days of an experiment irrespective of feeding conditions. However, the general level of excretion rates of fed specimens was higher than that of starved ones. The O:N, N:P and O:P ratios were calculated from respiration, ammonia excretion and phosphate excretion and discussed in relation to metabolic substrates of animals during the experiment. A marked difference was shown in the O:N ratio between fed hervivores (>16) and fed carnivores (7 to 19), suggesting highly protein-oriented metabolism in the latter. One unknown factor causing variation in excretion rates is speculated to be the physiological stress on animals during sampling from the field. It is suggested that the laboratory measurement of realistic excretion rates of zooplankton is difficult owing to their large fluctuations, but this is not the case with respiration rate.  相似文献   

6.
We captured two species of deep-sea zoarcids, Melanostigma pammelas and Lycodapus mandibularis, from Monterey Bay California and maintained them in the laboratory. One shallow-water zoarcid, Eucryphycus californicus, and an ecologically and morphologically similar stichaeid fish Xiphister atropurpureus were collected from intertidal and subtidal habitats in Monterey Bay. We investigated the absorption and assimilation efficiencies of these fishes to determine whether deep-sea species have evolved mechanisms to increase their efficiency of food use. Fishes were placed in experimental chambers and fed a known quantity of food. Ammonia excretion was measured and feces were collected daily. Both food and feces were analyzed for water, protein, lipid and ash to determine specific absorption efficiencies. Absorption ranged from 87.7 to 92.4% and assimilation efficiencies from 84.0 to 86.5%. Meal sizes from 0.5 to 4.0% of body weight did not affect the results. No significant differences were found between deep-sea and shallow-water species fed single meals or fed ad libitum for 10 days. This suggests that the selective pressure to maximize absorption and assimilation is universal and is not affected by the productivity of the habitat occupied. However, the relative size of the intestine in the deep-sea species was significantly smaller suggesting that they had a lower metabolic cost to maintain their digestive apparatus. It could not be concluded whether this was the result of pressure to conserve energy or rather the tendency of the shallow-living species to ingest more refractory material (i.e. sediment, algae).  相似文献   

7.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

8.
The nutritional history of corals is known to affect metabolic processes such as inorganic nutrient uptake and photosynthesis, but little is known about how it affects assimilation efficiency of ingested prey items or the partitioning of prey nitrogen between the host and symbiont. The temperate scleractinian coral Oculina arbuscula and its tropical congener Oculina diffusa were acclimated to three nutritional regimes (fed twice weekly, starved, starved with an inorganic nutrient supplement), then fed Artemia nauplii labeled with the stable isotope tracer 15N. Fed corals of both species had the lowest assimilation efficiencies (36–51% for O. arbuscula, 38–57% for O. diffusa), but were not statistically different from the other nutritional regimes. Fed and starved corals also had similar NH4+ excretion rates. This is inconsistent with decreased nitrogen excretion and reduced amino acid catabolism predicted by both the nitrogen recycling and conservation paradigms. In coral host tissue, ~90% of the ingested 15N was in the TCA-insoluble (protein and nucleic acids) and ethanol-soluble (amino acids/low molecular weight compounds) within 4 h of feeding. The TCA-insoluble pool was also the dominant repository of the label in zooxanthellae of both species (40–53% in O. arbuscula, 50–60% in O. diffusa). However, nutritional history had no effect on the distribution of prey 15N within the biochemical pools of the host or the zooxanthellae for either species. This result is consistent with the nitrogen conservation hypothesis, as preferential carbon metabolism would minimize the effects of starvation on nitrogen-containing biochemical pools.Communicated by P.W. Sammarco, Chauvin  相似文献   

9.
A laboratory energy budget was constructed for the larvae and juveniles of the American lobster Homarus americanus Milne-Edwards fed brine shrimp, Artemia saline L. Measured energy flows included ingestion, egestion, excretion of ammonia, routine and fed metabolism, growth, and production of exuvia. Digestion and assimilation were calculated and minimum ration of protein necessary to sustain larval lobsters was estimated. No change associated with metamorphosis was observed in rates of excretion, fed metabolism, and production of exuvia. Routine metabolism is not significantly higher for larvae than for juveniles. Growth changes from exponential in larvae to a slower increase in post-larvae. Consumption reflects changes in other variables. Changes in energy partitioning and energetic efficiencies associated with metamorphosis are largely due to change in rate of growth.  相似文献   

10.
The large bathypelagic mysid Gnathophausia ingens was collected in January 1980 at 400 to 700 m depth from the San Clemente Basin off southern California. Instars 7-8 and Instars 10-12 were starved in the laboratory for up to 19 wk. Oxygen consumption and ammonia excretion rates, and water, protein, lipid, and ash contents were determined periodically during starvation. Protein and lipid were metabolized in approximately equal amounts by starved individuals after the initial weeks of food deprivation. Unidentified components (probably non-protein nitrogenous compounds) apparently were oxidized within the first 7 wk of starvation. Oxygen consumption and ammonia excretion by Instars 7-8 decreased steadily during 19 wk of starvation. In contrast, stable or increasing respiration and excretion rates were observed for fed mysids. The mean respiration rate of Instars 10-12 did not change significantly during 13 wk of starvation, although ammonia excretion rates decreased. Low metabolic rates and large lipid reserves probably help G. ingens to withstand long periods of starvation in the mesopelagic environment. Calculations based on the laboratory data demonstrate that small, infrequent meals could account for the rates of metabolism and growth observed for G. ingens in the field.  相似文献   

11.
Energy budgets are proposed for four teleost and two elasmobranch species as well as for the main icthyofauna groups for a surf-zone ecosystem. The ecology of surf-zone fishes of eastern Cape beaches, Algoa Bay South Africa, is reviewed. Using the equationC=F+U+R d +R R +B, the following general energy budgets were derived for fishes: teleosts – 100=10+4+21+23+42; elasmobranchs – 100=11+2+16+24+48; whereC: food consumption;F: faeces;U: nonfaecal excretion;R d : apparent specific dynamic action;R R : routine metabolism;B: growth. These show that most of the energy consumed is used in metabolism (R d +R R ) and growth (B) whereas excretion (U) only accounts for a small portion. The energy budgets developed are within ranges recorded for other species. The main feeding groups of surf-zone icthyofauna are the southern mulletLiza richardsonii, the sandsharkRhinobatos annulatus, benthic feeders, zooplankton feeders, omnivorous and piscivorous fish with biomass values of 1000, 1000, 3000, 2400, 400 and 400 kJ m–1, respectively; and annual consumption budgets of 22107, 13725, 65710, 65476, 9758 and 8517 kJ m–1 yr–1, respectively.L. richardsonii feeds mainly on surf diatoms, consuming 0.5% of total diatom production. Zooplankton production supplies 91%, and macrobenthic production 9%, of the energy needs of other non-piscivorous carnivorous fishes. Piscivorous fishes consume 30% of the available fish production. Nonfaecal-energy production (8229 kJ m–1 yr–1) is utilised by surf diatoms, and faecal-energy production (30 341 kJ m–1 yr–1), is returned to the detritus pool to be utilised by the microbial loop in surf-waters. Our current knowledge of surf-zone energetics indicates that fishes are important predators. This study confirms the concept that the ecosystem generates adequate food for the fish assemblage. Fishes recycle energy, as excretory products, via the detritus pool and surf-diatoms, while fishes moving across the outer boundary of the surf-zone export energy from the system. Data presented, therefore, also support the general concept of a self-sustaining beach/surf-zone ecosystem.Please address all correspondence and requests for reprints to Dr Du Preez at his present address: Research Unit for Fish Biology, Rand Afrikaans University, P.O. Box 524, Johannesburg 2000, Republic of South Africa  相似文献   

12.
Measurements of respiration and excretion at 25°C were made for five species of ctenophores collected during five cruises to the Bahamas (1982–1984). The mean element-specific respiration and ammonium excretion rates of freshly collected specimens of all species ranged from 4 to 16% d-1, the mean atomic O:N ratios were 10 to 16, and ammonium averaged 60 to 90% of the total dissolved nitrogen excreted. For adult ctenophores, the carbon content ranged from 0.6% carbon (as percent of dry weight) for Bolinopsis vitrea to 3.7% carbon for Beroë ovata. There was a marked increase in the organic content (% carbon of dry weight) of small Bolinopsis vitrea with tentacles compared to fully lobate adults. B. vitrea had increasingly higher metabolic rates when held at food concentrations up to 100 copepods 1-1 (about 250 g C 1-1). The overall range between starved and well-fed B. vitrea was about two times for respiration and a factor of three for ammonium excretion. B. vitrea decreased from well-fed to a starved metabolic rate in about a day after removal from food. The metabolic rate of Eurhamphaea vexilligera was not measurably affected by short-term starvation or feeding (maximum 25 copepods 1-1). In feeding experiments, E. vexilligera of 20 to 56 mm length fed at rates equivalent to clearance rates of 250 to 1 800 ml h-1.  相似文献   

13.
Many prior studies of nitrogenous waste excretion in marine fish have examined excretion patterns for short time periods, and with relatively coarse sampling schemes (e.g., an initial and a final sample point). Recent studies of a ureotelic marine fish (the gulf toadfish, Opsanus beta) have demonstrated that urea excretion in this species occurs in brief but massive bursts, lasting from 0.5 to 3 h, and often only once per day. The present study sought to determine if prior sampling protocols may have underestimated the amount of urea being excreted by marine fish. A survey of 16 marine species (the teleosts: Myoxocephalus octodecemspinosus, Scophthalamus aquosa, Cyclopterus lumpus, Lophius americanus, Aprodon cortezianus, Cymatogaster aggregatus, Parophrys vetulis, Microstomus pacificus, Hippoglossoides elassodon, Bathyagonus nigripinnus, Ophiodon elongatus, Hemilepidatus spinosus, Icelinus terrius; the elasmobranch: Raja rhina; and the hagfish: Eptatretus stoutii) was undertaken for ammonia-N and urea-N excretion using a long sampling period (48 h) and hourly sample collection. Apart from the obvious exception of an elasmobranch, ammonia excretion was confirmed to be predominant in marine fish, with urea excretion constituting between 1.4 and 23.8% of the total of ammonia plus urea excreted. Notably, no pulses of urea excretion were detected. Despite the relatively low level of urea excretion, expression of urea transporter-like mRNA (detected using the toadfish urea transporter, tUT, cDNA as a probe) was discovered in gills of many of the species surveyed for nitrogen excretion patterns, although no signal was detected in the hagfish. These results suggest that urea excretion takes place through a specific transport pathway. Finally, more detailed analysis of nitrogen excretion in one of the surveyed species, the plainfin midshipman (Porichthys notatus) demonstrates that "total" nitrogen excretion estimated by summing ammonia and urea excretion underestimates true total nitrogen excretion by 37-51%.  相似文献   

14.
Average daily rations of 14, 35 or 58 mg Tubifex tubifex worm per gram of the fish Tilapia mossambica Peters represent maintenance, optimum or maximum feeding levels. At these levels, conversion efficiency (K 1) is 5,9 or 24%. An amount of 65 mg worm/g fish/day, when fed under experimental conditions, is converted with the poorest conversion efficiency (4%). Test individuals fed at 11 to 49 mg worm/g fish/day show a decreasing trend in water content (78.1 to 74.8%), and an increasing trend in fat content (32.1 to 44.2%). Below or above this feeding rate range, water content increases, while fat content decreases. The range of individual variations in fat content is nearly 3 times greater than that of ash and 15 times greater than that of water. Test individuals starved for 60 days lose 2.1 mg dry body weight/g/day. This loss is contributed by calorifically equivalent amounts of fat and protein. The endogenous loss of nitrogen by these individuals averaged 0.18 mg N/g body weight/day.  相似文献   

15.
The nature of protein catabolism in a wide range of species of midwater zooplankton was investigated. The weight-specific ammonia excretion rates (g NH3–N g–1 dry wt h–1, y) decline exponentially with minimum depth of occurreece (MDO, x), y=163.4 x–0.479±0.212 (95%ci) (CI=confidence interval), when temperature is held constant. The change in ammonia excretion can be partially explained by the decrease in percent protein (%P) with MDO, %P=80.17 MDO–0.148±0.122 (95%ci) The atomic O:N ratio of freshly caught zooplankters ranged from 9.1 to 91, with most measurements between 9 and 25. Detailed studies were carried out on the response of one of the species studied (Gnathophausia ingens) to starvation (28 d). After 14 d of starvation the average ammonia excretion rate declined by more than 75% to less than 1 g NH3–N g–1 wet wt h–1, although the average oxygen consumption declined by only 13% within the first 7 d of starvation and then remained stable. This differential response of oxygen consumption and ammonia excretion to starvation resulted in an increase in the average O:N ratio of starved animals from an initial 33 to 165 after 21 d. The average O:N ratios of fed mysids remained below 38 during the experiment. G. ingens maintains a relatively uniform metabolic rate during starvation by relying more heavily on its large lipid stores than when being fed.  相似文献   

16.
A complete energy balance equation was estimated for the common octopus Octopus vulgaris at a constant temperature of 20°C, fed ad libitum on anchovy fillet (Engraulis encrasicolus). Energy used for growth and respiration or lost with faeces and excreted ammonia was estimated, along with total energy consumption through food, for six specimens of O. vulgaris (with masses between 114 and 662 g). The energy balance equation was estimated for the specimens at 10-day intervals. During each 10-day interval, food consumed, body mass increase and quantity of faeces voided were measured. The calorific values of octopus flesh, anchovy flesh and faeces were measured by bomb calorimetry. Oxygen consumption and ammonia excretion rates were monitored for each specimen during three 24-h experiments and daily oxygen consumption and ammonia excretion were estimated. It was found that 58% of the energy consumed was used for respiration. The amount of energy invested in somatic and gonadal growth represented 26% of the total energy budget. The energy discarded through faeces was 13% of consumed energy. The estimated assimilation efficiency (AE) values of O. vulgaris feeding on anchovy (80.9–90.7%) were lower than the AE values estimated for other cephalopod species with different diets of lower lipid content such as crabs or mussels. Specific growth rates (SGR) ranged 0.43–0.95 and were similar to those reported for other high-lipid diets (bogue, sardine) and lower than SGR values found for low-lipid, high-protein diets (squid, crab, natural diet). Ammonia excretion peak (6 h after feeding) followed the one of oxygen consumption (1 h after feeding). The values of atomic oxygen-to-nitrogen (O:N) ratio indicated a protein-dominated metabolism for O. vulgaris.  相似文献   

17.
Female Calanus glacialis were collected in early May 1989 in the pack ice region of the western Barents Sea and were fed or starved over 11 wk. Both groups laid eggs continuously during this period, however, fed females laid up to six times more eggs. During the first 10 d after collection, both groups spawned at low rates. There-after, fed females strongly increased spawning rates and maintained high egg production levels over 11 wk, while the rates of starved females decreased. During starvation they lost 70% body carbon, 50% body nitrogen and 70% lipids. The wax ester portion decreased from 86 to ca. 60% of total lipids. Three phases of gonad development and lipid metabolism were distinguished: early gonad development; gonad maturation with a rapid decrease in lipids, especially wax esters; and spawning under fed and starved conditions, where in fed females food provided most of the energy, whereas in starved females the lipid content strongly decreased.  相似文献   

18.
The utilization and fate of nitrogen in larvae of plaice (Pleuronectes platessa), blenny (Blennius pavo) and herring (Clupea harengus), from the stage of first-feeding to metamorphosis, was examined under laboratory conditions. Rates of ammonia excretion, primary amine defaecation, and growth in terms of protein-nitrogen were monitored throughout larval life. Data were used to calculate daily ration, the coefficient of nitrogen utilization (absorption efficiency), and gross and net growth efficiencies. The developmental pattern of nitrogen balance was similar for plaice and blenny larvae. These species showed increasing growth efficiency (k1: 55 to 80%) with decreasing weight-specific waste nitrogen losses with age. Absorption efficiencies. were high (83 to 98%) in plaice and blenny larvae, and tended to increase with development in the former species. Ration relative to body weight decreased with growth in both species. Herring larval development, although at a slower rate than blenny and plaice, appeared normal up to 33 d, after which high mortality occurred. Absorption efficiency in this species tended to decline (83 to 43%) with age, until metabolic costs exceeded the absorbed ration and growth ceased. Artemia sp. nauplii proved a suitable food source for the rearing of plaice and blenny larvae, but this diet may have long-term toxicity or deficiency effects on herring. Availability and density of food affected nitrogen balance in the larvae of all three species. Feeding stimulated the output of wastes in excretion and defaecation by a factor of up to ten times the 12-h non-feeding basal rates. Waste nitrogen output reached a peak some 2 to 3 h after commencement of feeding and returned slowly to the baseline in 5 to 10 h after cessation of feeding. There was an asymptotic increase in ration, ammonia output and growth of larvae as prey density increased. Ration saturated at a higher prey density (>4 prey ml-1) than either growth or excretion rate (1 prey ml-1). Thus the efficiency with which food is absorbed and utilized for growth must eventually decline in response to high prey density. The idea that larval fish are adapted to maximize ingestion and growth rate, rather than optimize growth efficiency and thus to respond to prey occurring in either low density or in occasional patches, is supported by these results.  相似文献   

19.
B. W. Molony 《Marine Biology》1993,116(3):389-397
Young Ambassis vachelli (Richardson) 40 to 50 d old, were used in a laboratory experiment to test the effects of starvation and subsequent re-feeding on body constituents and growth. Fish in three laboratory treatments (fed continuously; fed for 9 d and then starved for 15 d; starved for 9 d and fed for 15 d), were compared to fish from a local field population. Different body stores were mobilised at different times and rates during starvation. Carbohydrates were mobilised from the onset of starvation and were depleted after 3 d. Lipid and protein were mobilised at an increasing rate from the onset of starvation. The mortality in starved fish was relatively high (up to 70%) until re-feeding. Upon feeding, all body stores were restored rapidly in fish that were starved, with carbohydrate levels displaying an overshoot (carbohydrate level exceeding normal levels) in comparison to the levels in continuously fed fish. After 15 d of feeding, the starved fish had levels of constituents similar to those in continuously fed fish. Fish that were fed and subsequently starved were able to maintain themselves for at least 15 d prior to death, indicating a better degree of starvation resistance than fish without a history of feeding. This implies that feeding history in the early life of a fish is important in growth and survival but that young fish may have growth regimes flexible enough to survive relatively long periods of starvation.  相似文献   

20.
Tsutomu Ikeda 《Marine Biology》2013,160(2):251-262
Respiration and ammonia excretion rates of 19–24 euphausiids from the epipelagic through bathypelagic zones of the world’s oceans were compiled. Body mass (expressed in terms of dry mass, carbon or nitrogen), habitat temperature and sampling depth were designated as parameters in multiple regression analysis. Results suggested that the three parameters were highly significant, contributing 71–89 % of the variance in respiration rates and 69–81 % of the variance in ammonia excretion rates. Atomic O:N ratios derived from simultaneous measurements of respiration and ammonia excretion rates ranged from 11 to 90 (median: 27), and no appreciable effects of the three parameters on O:N ratios were detected. If global-bathymetric models for the metabolism and chemical composition of copepods and chaetognaths are compared with those of euphausiids, it becomes evident that euphausiids are unique in that they maintain high metabolic rates and accumulate moderate amounts of energy reserves (lipids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号