首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

2.
Abstract

In this study, the toxicity of CuO (40?nm), α-Al2O3 (40?nm), and α-Fe2O3 (20–40?nm) nanoparticles was comparatively investigated on Carcinus aestuarii. Crabs were semi-statically exposed to 1?mg/L of each for 14?days and their accumulation and distribution in tissue and hemolymph, potential oxidative stress mechanism, total hemocyte counts and types, and the osmoregulatory and ionoregulatory responses were determined. The tissue distribution of CuO nanoparticles was hepatopancreas?>?hemolymph?≥?gill?> muscle, for α-Fe2O3 gill?>?hepatopancreas?>?muscle?> hemolymph, and for α-Al2O3 gill?>?muscle?≥?hemolymph?> hepatopancreas. While α-Al2O3 and α-Fe2O3 NPs, induced lipid peroxidation and changes in antioxidant enzyme activity in the hepatopancreas tissue, the oxidative damage caused by the CuO nanoparticles was minimal. All three nanoparticles, copper in particular, elicit osmoregulatory and ionoregulatory toxicity at this concentration, due to the inhibition of Na+, K+-ATPase activity in the gill and depletion of hemolymph and carcass ion concentrations.  相似文献   

3.
Abstract

The effects of suspensions of zinc oxide nanoparticles at concentrations between 100 and 500?mg L?1 on germination of Capsicum chinense seeds and vigor of plants were evaluated using a randomized complete design with four replications, resulting in increased germination and improved development of lengths of plumule and radicle. The activities of peroxidase, catalase and ascorbate peroxidase were determined, showing that at all concentrations the activities of the former two enzymes were increased, whereas the activity of the latter was reduced at 500?mg L?1. Pretreatments of seeds with ZnO nanoparticles can improve germination and development of seedlings and the activities of antioxidant enzymes.  相似文献   

4.
The aim of this study was to evaluate the effects of copper (Cu) stress on accumulation and transport of trace elements, nitrogen assimilation, and growth parameters of Verbascum olympicum. Eight-week-old seedlings were grown in Hoagland's solution and exposed to 0, 50, 250, or 500?µM CuSO4 for seven days in laboratory conditions. Bioaccumulation of trace elements (boron, bismuth, cobalt, Cu, iron, lithium, manganese, molybdenum, nickel, lead, zinc) in the roots and leaves was determined by inductively coupled plasma–mass spectrometry after one, three, and seven days. Chlorophyll content, nitrate reductase, and glutamine synthetase activities, soluble protein content, and biomass were determined. Copper accumulated in the roots and leaves (up to 19609.8 and 256.2?mg?kg?1 dry weight, respectively). Other trace elements accumulated to higher levels in the roots of Cu-treated plants compared with those of control plants. High Cu concentrations decreased nitrogen-assimilatory enzyme activities. Compared with control plants, those treated with high Cu concentrations showed lower chlorophyll contents, total protein contents, and biomass. Nitrogen assimilation and growth parameters of V. olympicum were negatively affected by Cu treatment but mineral nutrition was not severely disrupted. The results support the suitability of V. olympicum as a candidate for phytoremediation of Cu-contaminated soils.  相似文献   

5.
Nanocomposites composed of two or more components with desirable performance have attracted tremendous attention, mainly due to the synergic effect between the components. The effective combination of ZnO and reduced graphene oxide would lead to ameliorate the photocatalytic performance. To enhance applicability of semiconductor photocatalytic, the composites used should be good interfacial contact governed by suitable particle size distribution. Herein we aim to fabricate the different crystallize size of ZnO nanoparticles (NPs) in ZnO–reduced graphene oxide (ZnO–rGO) nanocomposites by sonochemical synthesis and subsequent facile drying treatment method. The Zn precursor, Zn(Ac)2, with a plenty of functional groups, was used as a starting source for both reduction of graphene oxide and formation of ZnO on rGO sheets through chemical bonds without the addition of hazardous reducing agents. LiOH was chosen as an assistive reagent to enhance the complete reaction between Zn(Ac)2 and GO in the formation of ZnO–rGO nanocomposites. More remarkably, drying condition has the great influence on the crystallize size of ZnO NPs in as-prepared ZnO–rGO nanocomposites. It is found that ZnO–rGO nanocomposites dried at ?50 °C (freeze drying) show the highest photocatalytic efficiency in the degradation of rhodamine B (RhB) as compared to ZnO–rGO nanocomposites by other drying conditions under visible-light irradiation. Correlating the crystallize size obtained by different drying temperatures with the photocatalytic activity, it is probed that the smaller crystallize size in ZnO–rGO nanocomposites enhances the interfacial contact and a chemical bonding between rGO and ZnO NPs leading to the effective separation of electrons and holes. In addition, the O 2 ·? anion was determined to be the main active oxidant by free radicals trapping experiment and a photodegradation mechanism of ZnO–rGO nanocomposites over rhodamine B (RhB) was proposed based on our observations.  相似文献   

6.
《毒物与环境化学》2012,94(3-6):190-203
Abstract

Carbon-coated magnetic nanoparticles were modified with cationic surfactant and used for the dispersive solid phase extraction of chlorophenols from aqueous samples. Surfactant adsorbed on the surface of the nanoparticles resulted in mixed hemimicelles for high extraction efficiency of chlorophenols. Under optimized conditions, calibration curves were linear from 0.5–20?mg L?1 for analytes with limit of detection between 0.2 and 0.4?mg L?1. The method was applied to extraction of chlorophenols from tap water, well water and industrial effluent. Recoveries were in the range of 94.0–99.4%, suggesting that sample matrix had little effect on the yields of extraction.  相似文献   

7.
The synthesis of silver doped nano-particulate titanium dioxide (Ag/TiO2) using a microemulsion method and an investigation of its photocatalytic activity for the degradation of Acid Red 27 in distilled water under UV-irradiation is reported. The prepared Ag/TiO2 is characterized using transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The size of the Ag nanoparticles is around 5–15?nm, with almost uniform distribution on the TiO2 particles. The efficiency of the photocatalytic process is evaluated to establish the optimum conditions, found to be at 2?wt% of Ag loading on TiO2, catalyst dosage of 400?mg?L?1, and calcination temperature of 300°C. Complete decolorization of the dye solution on Ag/TiO2 was observed in 20?min of UV irradiation in the optimum conditions.  相似文献   

8.
《毒物与环境化学》2012,94(3-6):204-214
Abstract

The applicability of inductively coupled plasma optical emission spectrometry has been examined for determination titanium dioxide and zinc oxide nanoparticles in industrial wastewater samples. The extraction and preconcentration of the nanoparticles were achieved using ligandless ultrasound-assisted surfactant-based dispersive liquid–liquid microextraction. Under optimized conditions, the developed method had limits of detection (LOD) of 2.7?ng L?1 for Ti and 3.6?ng L?1 for Zn resulting from dissolved TiO2 and ZnO nanoparticles. The relative standard deviation values for intraday precision were 2.5% and 3.1% for TiO2 and ZnO, while the interday precision was 4.5% and 5.0%. Percentage recoveries ranging from 98% to 100% were obtained. Finally, the applicability of the method was examined by analyzing spiked samples and wastewater samples collected from textile, cosmetic and paint industries.  相似文献   

9.
《毒物与环境化学》2012,94(3-6):281-299
Abstract

To investigate metal nanoparticle-induced phytotoxicity, Brassica nigra seeds were exposed to 50–1000?mg L?1 ZnO nanoparticles in culture media and 100–1000?mg kg?1 in soil. Plant length and weight were adversely affected in culture conditions, but with soil the effect was not significant. Determination of the radical-scavenging potential revealed that soil grown plants were less stressed than plants grown on culture medium. The total antioxidant and reducing power potential of soil grown plants were less variable compared to plants grown on culture medium. Total phenolic and flavonoid concentrations varied in plants, which changed with the nanoparticle’s concentrations in medium and soil. High performance liquid chromatography analysis showed that rutin was the major antioxidative molecule that significantly increased in nanoparticles-stressed B. nigra plants.  相似文献   

10.
A method is reported for the determination of methyl violet in the range of 10–120 nmol L?1. The method is based on the catalytic effect of silver nanoparticles (AgNPs) on the oxidation reaction of methyl violet by potassium bromate in acid medium. The reaction is followed spectrophotometrically by measuring the change in absorbance () at 620 nm using a fixed time method. The reaction variables were optimized in order to achieve highest sensitivity. The 3б criterion detection limit was 5 nmol L?1, and the relative standard deviation for ten replicate determinations at a concentration of methyl violet of 15 nmol L?1 was 0.97% (n = 10). The method was successfully applied to the determination of methyl violet in river water samples.  相似文献   

11.
Abstract

Glucomannan is a highly branched polysaccharide with glycosidic linkages, constituted of mannoses and glucoses. In recent years, its usefulness due to its immunological, antioxidant and antimutagenic activity has been recognized. The aim of the study was to determine the antigenotoxic ability of glucomannan extracted from Candida utilis orally administered (100–700?mg/kg) to mice, which subsequently received 1?mg/kg aflatoxin B1. Hepatocytes obtained from these animals 4–16?h post administration were examined by means of the comet assay. The antigenotoxic effect was found to be higher than that observed in previous studies with α-mannan and β-D-glucan isolated from Saccharomyces cerevisiae., In order to explore the possibility of formation of a supramolecular complex between glucomannan and aflatoxin B1, both compounds were co-crystallized, their melting points determined, and the complex analyzed through ultraviolet spectroscopy. The spectroscopy data suggest that the protective effect of glucomannan is related to the formation of a supramolecular complex between the two compounds.  相似文献   

12.
Abstract

The purpose of this study was to investigate the protective effects of zinc nanoparticles against cisplatin-induced testicular toxicity in mice. Zinc nanoparticles were produced by microwave-assisted synthesis using Lavandula vera extract as reducing agent. Single doses of cisplatin (7?mg/kg, intraperitoneally) and ZnSO4 (10?mg/kg, orally), and various doses of zinc nanoparticles (10???50?mg/kg, orally) and vitamin E (100?mg/kg, interaperitoneally) were administered. The protective role of zinc nanoparticles was determined biochemically and histologically. Gradual reduction in malondialdehyde levels and elevation in glutathione levels and in the activities of superoxide dismutase and catalase upon administration of zinc nanoparticles were observed. The pathology of mice treated with cisplatin/vitamin E and cisplatin/zinc nanoparticles were apparently equal, but vitamin E treatment was more effective in lowering oxidative stress markers than zinc nanoparticles. These findings suggest that co-administration of zinc nanoparticles with cisplatin could prevent adverse effects on the male reproductive system via their potential antioxidant properties.  相似文献   

13.
ABSTRACT

Soil properties have an important influence on soil fauna in the grassland ecosystem. However, the relationship between the structural characteristics of soil fauna and properties in the grassland ecosystem in freeze–thaw season remains unclear. Hence, the feature of soil arthropods and properties in Songnen Grassland of China were investigated in fall–winter alternating (T1), completely frozen (T2) and winter–spring alternating periods (T3) during freeze–thaw season in three years. Results showed slight differences in the community composition of soil animals with Oribatida, Prostigmata and Mesostigmata as co-dominant groups in all sampling periods. The total number of individuals of soil arthropod at low temperature was low. The pH value, electrical conductivity (EC), and moisture content had the same order of T3?>?T2?>?T1. The activities of invertase and urease increased with increasing soil temperature, whereas protease activity had no relationship with soil temperature, soil moisture, EC and soil organic matter (SOM), activities of protease and urease were principal factors affecting individual abundance of soil animals. The sequence of their effect degrees was moisture content > EC > SOM > protease activity > urease activity. The changes in the quantitative characteristics of soil animals were related to soil properties. Therefore, soil properties can affect the structural characteristics of soil arthropod in the Songnen Grassland of China in the freeze–thaw season.  相似文献   

14.
Abstract

Fusarubin analogues of Fusarium oxysporum f. sp. ciceris were investigated for antifungal activity in vitro against five soil borne phytopathogenic fungi. 3-O-Methyl-8-O-methyl-fusarubin was inhibitory towards S. sclerotiorum (EC50 0.33?mmol L?1) and Sclerotium rolfsii (EC50 0.38?mmol L?1). A structure–antifungal activity relationship of fusarubin analogues was established from their activity performance. Possible mechanism of action of these compounds was studied using molecular docking and simulations against three target enzymes which revealed receptor ligand binding affinity. Docking of 3-O-methyl-8-O-methyl-fusarubin into the succinate dehydrogenase site revealed formation of salt bridge, hydrogen bond, π–anion, π–alkyl, and Van der Waals interactions.  相似文献   

15.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   

16.
Abstract

A novel method of synthesis of tin dioxide quantum dots employing Camellia sinensis shoots as reducing agent and stabilizer is presented. The quantum dots were characterized by UV spectroscopy, X-Ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The crystalline tin dioxide quantum dots with an average size of 4.3?nm were of flake like morphology capped by phenolic compounds of Camellia sinensis. The quantum dots were employed for the photocatalytic degradation of thiamethoxam resulting in 57% degradation within 45 mins.  相似文献   

17.
Abstract

The effects of suspensions of cerium oxide nanoparticles sprayed onto marigold seedlings (Calendula officinalis L.) at concentrations between 50 and 3200 mg L?1 were studied. At concentrations of 50 and 100 mg L?1, the nanoparticles had a slight positive effect on some growth parameters, but at higher concentrations they caused severe oxidative damage. Activities of phenylalanine ammonia lyase and lipoxygenase increased from 400 mg L?1 upward, tyrosine ammonia lyase from 1600 mg L?1. Ascorbate and glutathione contents decreased from 400 mg L?1 upwards.  相似文献   

18.
A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.
  相似文献   

19.
Abstract

A rapid and selective technique for extraction, preconcentration and determination of trace amounts of cobalt in water and pharmaceutical samples by air-assisted liquid–liquid microextraction combined with flame atomic absorption spectrometry is proposed. 1-Nitroso-2-naphthol is used as a complexing agent and 1-octanol as an extraction solvent. Parameters relevant for analytical effectivity, i.e. pH of sample solution, concentration of complexing agent, volume of extraction solvent, and number of extraction cycles are optimized using a Box–Behnken design. At optimum conditions, a dynamic linear range of 5–600?µg L?1 is obtained, with a limit of detection of 1.2?µg L?1. The method is used for determination of Co(II) in environmental water and pharmaceutical samples.  相似文献   

20.
ABSTRACT

In order to evaluate the ecological risk reductions of copper (Cu) and cadmium (Cd) and the change of nutrient contents and stoichiometry in a smelter-impacted farmland in Guixi, Jiangxi Province, China, with ~ 800?mg Cu kg?1 soil and 0.8?mg Cd kg?1 soil, an three years in situ experiment was conducted. The field trial consisted of 4 ×?5?m plots in a completely randomised block design. Hydroxyapatite was added at 10?g kg?1 soil and Sedum plumbizincicola, Elsholtzia splendens, and Pennisetum sp. were planted. Post-treatment soil and plant samples were collected annually and analysed for Cu and Cd bioaccessibility, soil carbon: nitrogen: phosphorus (C:N:P), and the stoichiometries of soil β-glucosidase (BG), N-acetylglucosaminidase (NAG), and acid phosphatase (AP) activity levels. The results indicated that the hydroxyapatite treatments significantly reduced Cu and Cd bioaccessibility as well as the ratio of C:P and N:P. Moreover, BG, NAG, and AP activity levels all increased relative to those in untreated soil. Plants may also influence soil BG, NAG, and AP activity. This study demonstrated that in situ Cu and Cd stabilisation by hydroxyapatite and phytoextraction is ecologically safe and can alter soil mineral nutrient ecological stoichiometry and enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号