首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
黔南州土壤中多环芳烃的污染现状及来源分析   总被引:1,自引:0,他引:1  
采集贵州省黔南州12个县、市的表层(0~10 cm)土壤样品99个,采用高效液相色谱法(HPLC)对优先控制的16种多环芳烃(PAHs)进行定量分析,探讨了表层土壤中多环芳烃(PAHs)的污染状况及来源.结果表明,16种PAHs均有不同程度检出,12个县市土壤中∑PAHs平均含量在42.4~163.1 ng·g-1之间,含量最高的是都匀市,最低的是惠水县,全州平均值为68.7ng·g-1.通过与国内外土壤中PAHs含量的对比,研究区的土壤受到一定程度的PAHs污染,含量处于较低水平,各地污染程度有一定差距.在组成上,4环以上PAHs所占比例较高.根据2~3环和4~6环PAHs含量所占比例及菲(Phe)/蒽(Ant)、荧蒽(Flua)/芘(Pyr)比值,可以推断全州范围内PAHs主要来自工业燃煤、生活用煤的不完全燃烧和汽车尾气的污染等,污染水平与地区生产、生活方式密切相关.通过以上研究结果,可初步了解黔南州土壤中PAHs的污染现状,为以后土壤污染防治提供参考.  相似文献   

2.
为了研究新疆阿勒泰地区土壤多环芳烃(PAHs)污染状况,于2018年10月对阿勒泰地区表层土壤进行采样,共采集样品14个,采用气相色谱-质谱仪(GC-MS 7890A-5975MSD Agilent)测定土壤样品中16种优控PAHs含量,并对其组成、分布及来源情况进行解析。结果表明,阿勒泰地区表层土壤中∑_(16)PAHs含量介于3.48~103.81 ng·g~(-1)之间,平均含量为32.24 ng·g~(-1),PAHs组成以3、4环为主,其中,7种致癌PAHs总含量介于0.32~50.95 ng·g~(-1)之间,平均含量为11.20 ng·g~(-1)。研究区域土壤PAHs污染水平较低,且PAHs污染水平与海拔高度无显著相关性(r=-0.471,P=0.668)。同分异构体比值法分析结果表明阿勒泰地区土壤PAHs主要来源于化石燃料及生物质燃烧,机动车尾气排放对PAHs贡献较大。主成分分析-多元线性回归解析结果表明,阿勒泰地区土壤PAHs主要受交通源(62.8%)、焦炉和燃煤源(28.2%)以及生物质燃烧源(9.0%)3个污染源影响,与新疆2012年排放贡献源相比,交通源以及焦炉和燃煤源排放占比呈上升趋势。  相似文献   

3.
城市化的生态环境效应已成为当前全球环境变化研究的热点问题。以快速城市化地区深圳市为例,利用不同功能区的土壤调查数据,研究深圳市城市土壤多环芳烃(PAHs)含量、组分与来源的空间分布特征,并评估城市土壤PAHs的环境与健康风险。结果表明:深圳市主城区表层土壤中16种PAHs总含量为73. 47~2 309. 88ng·g~(-1),平均值为494. 34 ng·g~(-1); 7种致癌PAHs总含量为24. 45~1 274. 96 ng·g~(-1),平均值为257. 35 ng·g~(-1),占总量的52. 1%。在空间分布上以工业密集区表层土壤PAHs含量为最高,其次是人口和交通密集区,绿地比例大的区域最低。正定矩阵因子分解法(PMF)模型分析结果表明煤、石油等高温燃烧与交通废气排放是深圳市主城区表层土壤PAHs的最主要来源。深圳市主城区表层土壤PAHs平均含量对儿童和成人的致癌风险平均值均小于10~(-6),表明深圳市土壤环境质量总体优良,但局部样点对儿童和成人致癌风险的最大值达到10~(-6),存在潜在的致癌风险。快速城市化地区城市土壤污染防控应该引起重视,以保障城市经济与生态环境的协调发展。  相似文献   

4.
我国表层土壤多环芳烃(PAHs)污染状况及来源浅析   总被引:1,自引:0,他引:1  
统计了2004—2007年间公开发表文献中我国表层(0~30 cm)土壤中美国环保署规定的16种优先控制PAHs含量调查数据,总计约41项研究,包括34个市(地)区的2 353个样点,以研究区域的地理位置划分为东北地区、京津及周围地区、长三角地区、珠三角地区和中西南地区5大区域。从全国范围看,我国浅层土壤中PAHs总量范围为ND(未检出)~27 580.9μg·kg~(-1),平均值为1 462.55μg·kg~(-1);7种致癌PAHs含量范围为ND~3 657.67μg·kg~(-1),平均值为636.64μg·kg~(-1),约占PAHs总量的44%。全国2~3环PAHs、4环PAHs和≥5环PAHs所占比例相当。区域间PAHs含量差异较大,处于北方的东北地区、京津及周围地区以及处于南北过渡区的长三角地区表层土壤中PAHs类型主要为4环和≥5环PAHs,代表性单体PAH也多为致癌PAH,处于南方的珠三角地区和中西南地区表层土壤中PAHs主要类型包括2~3环PAHs,代表性单体PAH较少为致癌PAH。利用特征化合物比例法〔Ant/178、Baa/228、Ilp/(Ilp+Bpe)和Fla/(Fla+Pyr)〕对PAHs来源进行分析,结果表明我国表层土壤中PAHs来源以草、木材和煤燃烧为主,汽车尾气排放及石油源也占相当比例;Ilp/(Ilp+Bpe)与Fla/(Fla+Pyr)比值分析表明,京津及周围地区表层土壤中PAHs来源绝大部分以草、木和煤燃烧为主,而长三角和珠三角地区PAHs来源以汽车尾气排放所占比例较大。从PAHs总量来看,我国有23%的土壤未受PAHs污染,轻微污染土壤占31%,污染土壤占8%,严重污染土壤占38%;根据Bap指标进行的评价结果表明,我国有20%的土壤受到污染。2种评估结果均表明北方受污染土壤样点比例要明显高于南方。  相似文献   

5.
以北京市某废弃焦化厂为研究对象,系统采集了6个车间0~4m深的26个土壤样本,利用GC/MS检测了U.S.EPA优控的16种多环芳烃(PAHs)的含量,分析了PAHs在焦化厂不同车间表层土壤的污染状况和深层土壤中的垂直分布特征并对土壤污染风险进行了评估.结果表明,1)该废弃焦化厂不同车间表层土壤(0~20cm)总PAHs(∑PAHs)的残留量介于672.8~144814.3ng·g-1之间;污染程度排序为:回收车间>老粗苯车间>焦油车间>炼焦车间>水处理车间>制气车间.2)该厂未受扰动的土壤样品显示PAHs主要聚集在表层土壤,并随着土壤深度的增加而迅速减少;其他样点由于土壤扰动,∑PAHs含量最大值出现在第三层土壤(80~180cm);该厂4m深底层土壤仍有高浓度PAHs,∑PAHs含量最高值出现在炼焦车间,达12953.1ng·g-1.3)焦化厂土壤PAHs污染主要集中在3环和4环的PAHs单体上,分别占到污染总量的51.3%和31.7%.4)根据Maliszewska-Kordybach的PAHs总量标准及加拿大土壤PAHs单体治理标准,该厂回收、老粗苯、焦油和炼焦车间表层和深层土壤PAHs含量均达到重污染水平,并对其周围土地带来较大风险,需要治理.  相似文献   

6.
本研究于2016年采集太原市公园14个表层土壤样品,应用气相色谱质谱联用仪(GCMS)分析了样品中16种优先控制多环芳烃(PAHs)含量,并探讨了PAHs的来源和健康风险.结果表明,样品中∑16PAHs平均浓度为1301.99 ng·g~(-1)(范围为294.36—2540.64 ng·g-1),与国内其他城市相比属于较高污染水平.土壤中PAHs以4环为主,其次为5环、3环、6环、2环.PAHs空间分布受污染排放源和暴露时间的影响存在较大差异.源解析结果表明,土壤中PAHs主要来自煤和机动车排放、焦化、生物质燃烧,3种来源贡献率分别为64.58%、18.75%、16.67%.通过风险评价发现所有土壤中PAHs均超过相应的标准,存在相当高的潜在风险,对公众健康存在影响,应当引起高度重视.  相似文献   

7.
采集我国某大型钢铁企业22个表层土壤(0—20 cm)样品,采用气相色谱-质谱(GC-MS)分析了其中16种多环芳烃(PAHs)的含量,并采用荷兰、加拿大土壤标准及苯并[a]芘的毒性当量浓度(TEQBa P)对PAHs生态风险进行评价.结果表明,土壤中∑16PAHs含量范围为21.0—20062.0μg·kg~(-1),平均值为2564.7μg·kg~(-1),单体以Flu、Pyr的含量最高,较之背景点土壤中PAHs含量,平均富集系数为22.9(Bk F)—304.0(Flu).与国内同类研究相比,该钢铁厂表层土壤中PAHs污染处于中等水平.各采样点中PAHs组成主要以4环为主,占31.9%—100%,5环组分仅次于4环.相关性分析表明,PAHs低环(2—3环)与中环(4环)组分之间相关性更强,且二者与TOC相关性较高环组分显著.50.0%的采样点超过荷兰土壤标准目标参考值,该钢铁厂表层土壤已处于中等风险水平,污染主要集中在球团厂、焦化厂、炼铁厂和厂前交通繁忙区.其土壤潜在风险已呈增加趋势,有必要进行能源结构改造并加强污染监控.  相似文献   

8.
中国主要地区表层土壤多环芳烃含量及来源解析   总被引:1,自引:0,他引:1  
以表层土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)为研究对象,查阅2000—2016年间发表的101篇中国主要地区表层土壤多环芳烃的文献,系统分析了中国主要地区表层土壤中PAHs的含量、组分、分布特征及主要来源,为中国土壤多环芳烃污染防治提供科学依据。结果表明:中国主要地区表层土壤中16种优控多环芳烃总量(中位值)(∑PAHs)为515.70 ng·g~(-1),和其他国家相比处于中等水平。16种多环芳烃(PAHs)在表层土中以菲(Phe)、荧蒽(Fla)和萘(Nap)的含量(中位值)最高,苊烯(Acy)、苊(Ane)以及茚苯并(1,2,3,-cd)芘(Inp)含量(中位值)最低;∑PAHs含量(中位值)地域分布表现为西北地区华北地区东北地区华东地区华中地区华南地区西南地区。表层土壤PAHs组成以高环(4环及以上)为主,占60.06%,不同地区PAHs的组成不同;通过对16种检出PAHs进行聚类分析,得出中国主要地区PAHs主要有煤炭燃烧源、油类燃料燃烧源、焦油生产源、石油源和生物质燃烧源等5个来源。结合同分异构体比值法和污染物特征指数法,进一步对22个省区表层土壤PAHs进行聚类分析,得出新疆、天津、陕西表层土壤PAHs主要来源于液化石油燃料及原油的污染,燃料成分主要为汽油;福建、吉林、山西、贵州和江西表层土壤中PAHs主要来源于草、木材、煤炭及生物质燃烧;北京、湖北、黑龙江、安徽、西藏、江苏、广东、浙江、湖南、山东、宁夏、重庆及香港等表层土壤PAHs则主要来源于液体化石燃料、生物质及煤炭的燃烧,燃料成分为煤炭和汽油。  相似文献   

9.
为研究焦化厂土壤中多环芳烃(PAHs)的污染特征及其健康风险,以某焦化厂为目标,布设260个点位,根据各点位污染情况,采集不同深度的土壤样品共780件。通过分析样品中18种PAHs含量,探讨了不同判定标准下厂区土壤中PAHs总体污染程度以及不同功能区污染状况特征,同时根据HJ 25.3—2019《建设用地土壤污染风险评估技术导则》对厂区内18种PAHs进行健康风险评价。结果表明:(1)该焦化厂污染水平较高,且厂区污染在空间上表现出强烈非均质性。厂区内PAHs以2~3环为主,占比为58.82%,4~6环PAHs占比为41.48%。厂区内以苯并[a]芘为基准的6种主要风险PAHs的毒性当量浓度(TEQBap)分布特征与总PAHs(∑18PAHs)含量分布具有一致性。(2)不同功能区表层土壤PAHs含量均值从高到低依次为污水处理区>化产区>焦炉区>锅炉发电厂>煤炭储存区>办公区。不同功能区低环与中高环PAHs含量比值不同,表明各区域污染物来源存在差异。(3)厂区内主要健康风险来源于化合物的致癌风险,不同功能区的致癌风险...  相似文献   

10.
地理探测器能快速定量化揭示驱动重金属含量影响因素的强度,这对于重金属空间预测模型构建变量的确定和土壤污染修复措施的精准实施具有重要意义。利用地理探测器模型,对5种土壤重金属元素Cu、Zn、Pb、Cr、Ni的空间分布和11种环境因子的交互作用进行定量评估,通过单因子指数法进行重庆市土壤重金属污染风险评价。结果表明:研究区内土壤Cu、Zn、Cr和Pb的平均含量是重庆市土壤背景值的1.3—1.4倍,Ni含量低于背景值;其中Cu、Pb达到重度污染水平,其余3种重金属为中度或轻度污染水平。5种重金属元素中Cu和Pb为高度变异(变异系数为0.57、0.4),Zn、Cr和Ni为中等变异(变异系数为0.22—0.29),且各重金属元素之间呈显著正相关性,表明研究区重金属富集受人为干扰影响较大,且污染具有复合性或同源性。地理探测器的因子探测发现高程、坡度和土壤类型对5种土壤重金属含量的解释力最显著,说明地势和土壤类型是土壤重金属含量分布差异的最主要影响因素。交互作用探测发现,高程与其他因子交互作用是重金属空间分异的主导因素,气候条件和土壤类型也是重要影响因子。土壤重金属空间分布是多种因素共同作用的结果,而高程、坡度和土壤类型具有较强的解释力,这些因子可作为土壤重金属含量空间预测模型的辅助变量,也可促进重金属污染治理措施的靶向实施。  相似文献   

11.
济南市表层土壤中PAHs的分布、来源及风险分析   总被引:7,自引:0,他引:7  
以山东省济南市为研究区域,采集测定了35个表层土壤样品中16种优先控制PAHs的含量,在此基础上对其组成特征、来源和环境风险进行了分析.结果表明,16种PAHs在所有样品中均具有较高的检出率,部分达到100%.含量范围为55.8—1.24×104μg·kg-1,平均值1.27×103μg·kg-1,中位值263μg·kg-1,低于已报道的我国其他地区表层土壤PAHs的污染水平.各功能区含量高低顺序为工业区、交通繁忙区、商业居民区和农田.PAHs组成分析与因子分析表明,济南市表层土壤中PAHs为混合源,煤、石油等化石燃料不完全燃烧作用占优势.16种PAHs的Bap总毒性当量浓度(TEQBa p)在0.54—1.37×103μg·kg-1之间,7种致癌性PAHs的TEQBap占总TEQBap的98.9%,是环境风险的主要贡献者.农田土壤风险水平较低,工业区土壤风险水平较高,需要管理部门特别注意.  相似文献   

12.
为了解三亚河表层沉积物中多环芳烃分布特征及生态风险,应用加压流体萃取、高效液相色谱检测表层沉积物中16种优先控制PAHs的含量和组成.结果表明,研究区域内表层沉积物中PAHs含量为3.23—493 ng·g~(-1)之间,平均浓度为211 ng·g~(-1),调查区域表层沉积物中PAHs含量与其它区域河流、湖库和海域沉积物中PAHs的含量比较,PAHs含量属于低值水平.调查区域表层沉积物中PAHs含量以3—5环为主,其对总浓度的贡献率为76.6%—100%,平均为84.4%,采用同分异构体比值分析结果显示PAHs主要来源于木柴、煤炭等燃烧源.质量基准法和质量标准法分析表明三亚河表层沉积物中的PAHs含量水平对该区域的生态环境影响较小,但对长期生活在该区域的底栖生物将构成轻微的潜在威胁,应采取相应管控措施,控制多环芳烃排入三亚河.  相似文献   

13.
调查与分析焦化遗留场地的土壤复合污染特征是土地安全再利用的基础.以某焦化场地为例,采集0—5 m深度范围内的土壤样品,测定其中的重金属与PAHs含量,并运用反距离插值法分析场地重金属与PAHs的污染特征,采用内梅罗综合污染指数法评估焦化场地重金属的污染程度,质量基准法评价PAHs的生态风险.结果表明:污染物分布的空间差异性明显,重金属与高环PAHs集中分布在0—1 m表层土壤,低环PAHs在杂填土与粉质粘土交界处呈现富集状态;重金属与PAHs的来源不同,但经迁移后在场地煤库、鼓冷车间及制冷站等区域共存形成复合污染;内梅罗综合污染指数评价表明,场地内气柜、煤库/煤棚、制冷站区域为中度—重度污染,质量基准法表明气柜、鼓冷车间、洗苯脱苯车间及煤库/煤棚处于中—高生态风险.本研究结果能够为焦化场地的后续土壤修复工程及生产工艺优化提供参考.  相似文献   

14.
于2015年6月采集日照市岚山化工园区和临沂市罗庄华宇电解铝厂周围土壤样品,分析了16种多环芳烃(PAHs)的含量和组成,研究了距化工区不同距离的土壤中PAHs含量和组成的变化、来源及健康风险.结果表明,岚山化工园区周围土壤中PAHs总含量(∑_(16)PAHs)(2764.2—3435.9μg·kg~(-1))略高于华宇电解铝厂周边土壤中∑_(16)PAHs(2729.7—3047.5μg·kg~(-1)),均达到重度污染.两化工厂周边土壤中各环数PAHs所占比例大小顺序均为4环5环3环2环和6环,但各PAHs化合物的组成存在差异.距化工区越远,土壤中∑_(16)PAHs含量越低,但各环数PAHs含量变化不一致.同分异构体比值法结果表明,两化工厂PAHs主要来源是燃煤和石油燃烧.正定矩阵因子分解法表明,岚山化工园区周围土壤PAHs的来源中燃煤源占36%,汽油和柴油燃烧源占21.6%,生物质燃烧源占19.1%,石油源和焦炭燃烧混合源占19.3%.华宇电解铝厂周围土壤PAHs的来源中燃煤源占33.5%,汽油燃烧源占24.8%,柴油燃烧源占31.4%,生物质燃烧源占10.3%.岚山化工园区周围土壤PAHs来源中燃煤源所占比例高于华宇电解铝厂,汽油和柴油燃烧源所占比例低于华宇电解铝厂.岚山化工园区和华宇电解铝厂周边土壤中PAHs的总Ba P_(eq)平均值分别为326.7μg·kg~(-1)和441.1μg·kg~(-1),均低于加拿大土壤质量指导值600μg·kg~(-1).健康风险评估表明,华宇电解铝厂总ILCRs值(3.9×10~(-6)—6.0×10~(-6))高于岚山化工园区(2.9×10~(-6)—4.5×10~(-6)).两化工厂周围土壤总ILCRs值大于1×10~(-6),均存在潜在的致癌风险.  相似文献   

15.
福建某钢铁厂区域表层土壤PAHs污染特征与风险分析   总被引:5,自引:0,他引:5  
侯艳伟  张又弛 《环境化学》2012,31(10):1542-1548
采用气相色谱-质谱联用仪(GC-MS)分析福建某钢铁厂区域不同功能区表层土壤中16种优控PAHs含量,并对其组成、来源和环境风险进行了分析.结果表明,各样点土壤中16种优控PAHs的检出率达到100%,其总含量范围为68.7—18100.6μg.kg-1,平均值为5084.5μg.kg-1.7个功能区土壤中PAHs主要以高环(4—6环)为主.异构体比值法分析表明该钢铁厂区域各功能区土壤中PAHs主要来源于石油燃料的燃烧.土样中16种PAHs的TEQBaP为6.01—3110μg.kg-1,平均值为852μg.kg-1,7种致癌PAHs对16种PAHs总TEQBaP的贡献达到99.1%,其中BaP和DBA对总TEQBaP的贡献值较大,分别达到61.6%和14.5%.除郊区外,其它6个功能区土壤样品10种PAHs的总TEQBaP都超过荷兰土壤标准目标参考值,表明该钢铁厂区域多数功能区表层土壤均存在潜在的环境风险.  相似文献   

16.
深圳表层土壤中多环芳烃的污染特征及来源   总被引:5,自引:2,他引:3  
2007年1月采集深圳市36个土壤,采用气相色谱-质谱仪对其中的16种优先控制的多环芳烃(PAHs)进行分析.结果表明:16种PAHs的含量范围在67.77137.0 ng · g-1之间,平均值为664.7 ng · g-1,其中苯并[b]荧蒽的含量最高,致癌性PAHs占总量的51.9﹪.PAHs在深圳不同土地利用类型的土壤中的含量由高到低的次序为:菜园地,城区,果园地,林地.PAHs主要来源于燃烧来源,果园地、林地中的PAHs主要来源于长距离的大气迁移,部分城区土壤指示有石油来源.深圳市19.4﹪的土壤属重污染,重污染的土壤主要分布在菜园地和城区两类土壤中,城区表层土壤PAHs含量较国外其他城市低.结果对于认识PAHs在深圳土壤中的分布规律和环境迁移、以及如何控制PAHs污染具有重要的意义.  相似文献   

17.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

18.
珠江三角洲表层土壤中的多环芳烃   总被引:4,自引:0,他引:4  
余莉莉  李军  刘国卿  刘向  祁士华  张干 《生态环境》2007,16(6):1683-1687
多环芳烃是一类主要由人类活动排放的有毒有机污染化合物,对人和生物体具有致癌、致畸和致突变效应,是评价土壤生态污染的重要内容之一。文章利用螺旋钻采样、索氏抽提、硅胶氧化铝净化和GC-MS分析,研究了珠江三角洲不同功能区(城市点、郊区点、乡村点)的76个表层土壤样品(耕作土、非耕作土)中多环芳烃(PAHs)的含量、分布特征及其影响因素。结果表明,16种优控PAHs的总质量分数范围为31.5~791.6ng·g-1(平均279.1ng·g-1,以干质量计),以萘(44.4%)、菲(13.7%)、荧蒽(8.4%)、芘(4.9%)、■(6.6%)等化合物为主。与国内外其它地区的城市相比较,珠江三角洲地区土壤PAHs的污染程度较低,在组成上也表现出亚热带地区独特的中、低环化合物为主的特征。受人类经济活动的影响,地处珠江三角洲中部的经济工业中心地带,土壤中PAHs含量相对较高。珠三角表层土壤PAHs含量和组成分布主要受大气沉降控制,而与土壤有机碳、pH的相关性较小。高温潮湿的亚热带季风气候是影响珠三角土壤PAHs的降解和迁移的重要环境因素。  相似文献   

19.
为了探明山东省农业典型地区土壤中多环芳烃(PAHs)的污染现状,采用GC-MS联用技术定量分析了2008—2011年山东省农业典型地区(济宁、宁阳、寿光)土壤中16种PAHs的含量,并对其分布特征、来源以及生态风险进行了评价。结果表明,16种PAHs的平均质量分数为46.3~149.2μg·kg~(-1),且以萘(NAP)和菲(PHE)为主。寿光地区土壤中16种PAHs的平均质量分数最高,其次是宁阳和济宁。由于0~10 cm的表层土壤受人为干扰因素较大,导致16种PAHs含量在表层土壤中较高,且随土壤深度的增加而逐渐降低。不同使用类型土壤中PAHs含量高低为:水稻土旱作土自然土。特征分子比值法结果显示w(PHE)/w(ANT)15、w(FLT)/w(PYR)1、w(FLT)/[w(FLT)+w(PYR)]0.5以及w(IND)/[w(IND)+w(Bghi P)]0.5,表明该区域土壤中的PAHs主要来源于煤、薪柴和秸秆的不完全燃烧以及木灰和秸秆等有机肥的回田利用。根据荷兰Maliszewska-Kordybach分析方法得到,寿光地区0~10 cm土壤16种PAHs平均质量分数为227.9μg·kg~(-1),属于轻微污染,而宁阳和济宁地区土壤尚处于无污染水平。利用土壤苯并[a]芘的毒性当量浓度(TEQBap)评价PAHs的生态风险,结果表明具有致癌性的7种PAHs是TEQBap的主要贡献者,且荷兰土壤标准中的10种PAHs在济宁、宁阳和寿光3个典型农业区0~10 cm土层的TEQBap平均值分别为0.64μg·kg~(-1)、7.41μg·kg~(-1)和13.61μg·kg~(-1),均低于荷兰土壤管理条例规定的目标值,说明山东省农业典型地区土壤PAHs风险较低。  相似文献   

20.
系统采集了环渤海北部沿海地区31个表层土壤样品,利用GC/MS分析了16种USEPA优控多环芳烃(PAHs)的含量和组分特征,运用主成分因子载荷法揭示了其污染来源,并初步评价了其风险水平.结果表明,沿海地区65%的土壤已被污染,最高污染样点PAHs含量达920.4ng·g-1,平均含量309.5ng·g-1,与国内外相关研究比较,处于中低等污染水平.各类燃料的不完全燃烧是该地区土壤中PAHs的主要来源,石油类挥发或泄漏对采油区土壤中PAHs的累积影响显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号