首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The belt transect and the flowmeter methods, used to survey sedentary benthic organisms, were compared based on abundance estimates of tridacnid clams in the Cagayan Islands, Philippines, in April 1985. Two-way ANOVA and chi-square tests (P<0.05) show that both methods recorded similar estimates for the number of clams (regardless of species), both methods gave similar estimates for the number of individuals per species, and one or both methods may be biased for certain sizes of clams. Individuals smaller than 6 cm shell length seemed to be underestimated by the flowmeter method. Future studies must investigate the size selectivity of the method used, for instance by conducting permanent belt, transect surveys of varied belt widths (e.g. 1, 1.5,2,2.5 m) and then comparing the recorded lengths of the most abundant clams. This will aid investigators to evaluate their data properly, and enable comparison of clam-stock estimates between surveys.  相似文献   

2.
Total abundance estimates for the large, common, reef fish Cheilodactylus spectabilis (Hutton) were obtained for a marine reserve and adjacent section of coast in north-eastern New Zealand during 1985. Visual strip-transects were used to estimate abundance and size structure in both areas. The accuracy, precision and cost efficiency of five transect sizes (500, 375, 250, 100, 75 m2) were examined over three times per day (dawn, midday and dusk), by simulating transects over mapped C. spectabilis populations. Two transect sizes showed similarly high efficiency. The smaller of the two (20x5 m) was chosen for the survey because of the general advantages attributable to small sampling units. Biases related to strip-transect size are discussed. Preliminary sampling indicated that C. spectabilis was distributed heterogeneously, and that density was habitat-related. An optimal stratified-random design was employed in both locations, to obtain total abundance and size-structure estimates. This reduced the between-habitat source of variability in density. The total number of sampling units used was governed by the time available. The resulting total abundance estimates obtained were 18 338±2 886 (95% confidence limit) for the 5 km marine reserve, compared to 3 987±1 117 for an adjacent, heavily fished 4 km section of coast. When corrected for total area and habitat area sampled, this represented a 2.3-fold difference in abundance. If sampling had been designed to detect an arbitrary 10% difference in abundance within each habitat, an infeasible 440 h of sampling would have been required. Size-frequency distributions of C. spectabilis at the reserve had a larger model size class than distributions from the adjacent area. The data suggest that reserve status is causal in these differing abundance and size structure estimates.  相似文献   

3.
Density estimation of marine benthic fauna is most often conducted with fishery surveys using dredges or trawls. These estimates are often unreliable due to low and variable efficiency and are inappropriate when dealing with rare or endangered species. In the marine Lake Vouliagmeni, a density surface modelling (DSM) approach using survey data from line transects, integrated with a Geographic Information System (GIS), was used to estimate the population density of the endangered fan mussel Pinna nobilis. This is the first time that such an approach has been applied for a marine benthic species. DSM was beneficial in relation to traditional distance sampling. Apart from providing a more precise total abundance estimate, it related the density of the species to spatial covariates of interest, gave a depiction of the species dispersion in the study area, and provided abundance estimates in any sub-region of the study area. In Lake Vouliagmeni, a marked zonation of P. nobilis distribution was revealed, with the species being restricted in the shallow peripheral zone at depths <22 m. Two density peaks were observed, a major peak at depths between 12 and 13 m and a secondary peak at ∼4 m. A main hotspot of high density was also observed in the northeastern part of the lake. Total abundance of the species was estimated to be 6,770 individuals with a 95% confidence interval of 5,460–8,393 individuals.  相似文献   

4.
Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (<10%) than published estimates from surveys along small transects (<0.02 ha), which is not consistent with inverted biomass pyramids (predator biomass greater than prey biomass) reported by other researchers for pristine reefs. We examined the relation between the density of reef sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas.  相似文献   

5.
Quantifying the distribution and habitat use of sharks is critical for understanding their ecological role and for establishing appropriate conservation and management regimes. On coral reefs, particularly the Great Barrier Reef (GBR), little is known regarding the distribution of sharks across major reef habitat types. In this study, we surveyed shark populations across outer-shelf reefs of the GBR in order to determine the diversity, abundance, and distribution of reef sharks across three major coral reef habitats: (1) the reef slope, (2) the back reef and (3) the reef flat. Model selection revealed that habitat was the principal factor influencing shark distribution and abundance. Specifically, overall shark abundance and diversity were significantly higher on the reef slope (and to a lesser degree, the back reef) than the reef flat. This confirms that shark populations are not homogeneously distributed across coral reefs. Thus, the results presented herein have important implications for shark population assessments. In addition, our results highlight the potential importance of the reef slope, with high levels of live coral cover and structural complexity, for sustaining reef shark populations. As this habitat is highly susceptible to disturbance events, this study provides a useful context for predicting and understanding how environmental degradation may influence reef shark populations in the future.  相似文献   

6.
Abstract:  The use of local ecological knowledge (LEK) has been advocated for biodiversity monitoring and management. To date, however, it has been underused in studying wild populations of animals and, particularly, in obtaining quantitative abundance estimates. We evaluated LEK as a tool for collecting extensive data on local animal abundance and population trends. We interviewed shepherds in southeastern Spain, asking them to estimate the local abundance of the terrestrial tortoise Testudo graeca . We quantified reliability of abundance estimates derived from interviews by comparing them with those obtained from standard field-sampling protocols (distance sampling). We also explored the complementarity of these 2 approaches. LEK provided high-quality and low-cost information about both distribution and abundance of T. graeca . Interviews with shepherds yielded abundance estimates in a much wider range than linear transects, which only detected the species in the upper two-thirds of its abundance range. Abundance estimates from both methodologies showed a close relationship. Analysis of confidence intervals indicated local knowledge could be used to estimate mean local abundances and to detect mean population trends. A cost analysis determined that the information derived from LEK was 100 times cheaper than that obtained through linear-transect surveys. Our results should further the use of LEK as a standard tool for sampling the quantitative abundance of a great variety of taxa, particularly when population densities are low and traditional sampling methods are expensive or difficult to implement.  相似文献   

7.
Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide‐ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3‐month survey and adapted a Bayesian spatially explicit capture‐recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture‐recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km2, and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions.  相似文献   

8.
Line transect sampling is an effective survey method for estimating butterfly densities because it provides unbiased estimates of site-density (provided key assumptions are met), and estimates are comparable among sites. For monitoring Karner blue butterflies in Wisconsin, USA, comparable estimates are required because each year a different selection of sites will be monitored. Annual state-wide indices of species abundance can be derived from the site-surveys and compared to previous year's indices to monitor trends. We advocate that line transect sampling is preferable to Pollard-Yates transects as a survey technique for monitoring Karner blue butter- flies. The Pollard-Yates surveys do not adjust for diferences in site detectability. As a consequence, estimates of among-site from Pollard-Yates surveys can be biased. © Rapid Science 1998  相似文献   

9.
The habitat of Trochus niloticus in the Bourke Isles, Torres Strait, was classified into areas of a Landsat image, using high-ratio values of green (Band 2) to red (Band 3) light, along the windward reef margins. These shallow-water (< 15 m) areas have a coral and rubble/algal pavement cover, which constitutes the optimal habitat for this gastropod. The habitat was sampled to estimate the abundance of T. niloticus. The proportion of commercial-sized individuals was estimated by measuring the basal width of all individuals in a sample. A multistage sample design incorporating three spatial scales -100 m2 (transect), 1500 m2 (site) and 1 km2 (reef) — was used to provide variance estimates for sample-design optimisation and to provide data on the spatial variation of abundance. Most variation (68%) in abundance was within reefs and was attributable to differences in reef cover. Variations in abundance and time costs for sampling 2 and 4 m transects were compared; the 2 m transect was more efficient than the 4 m transect. The abundance estimates were combined with habitat-area estimates and the proportion of commerical-sized individuals was estimated at a standing stock of 186000 (24% precision), or 14 t of commerical-sized T. niloticus.  相似文献   

10.
Knowledge of animal abundance is fundamental to many ecological studies. Frequently, researchers cannot determine true abundance, and so must estimate it using a method such as mark-recapture or distance sampling. Recent advances in abundance estimation allow one to model heterogeneity with individual covariates or mixture distributions and to derive multimodel abundance estimators that explicitly address uncertainty about which model parameterization best represents truth. Further, it is possible to borrow information on detection probability across several populations when data are sparse. While promising, these methods have not been evaluated using mark-recapture data from populations of known abundance, and thus far have largely been overlooked by ecologists. In this paper, we explored the utility of newly developed mark-recapture methods for estimating the abundance of 12 captive populations of wild house mice (Mus musculus). We found that mark-recapture methods employing individual covariates yielded satisfactory abundance estimates for most populations. In contrast, model sets with heterogeneity formulations consisting solely of mixture distributions did not perform well for several of the populations. We show through simulation that a higher number of trapping occasions would have been necessary to achieve good estimator performance in this case. Finally, we show that simultaneous analysis of data from low abundance populations can yield viable abundance estimates.  相似文献   

11.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   

12.
The Panulirus ornatus stock in a 25 000 km2 area of Torres Strait was estimated by making visual counts of the number of lobsters in strip transects. Pilot studies in 1988 to assess the feasibility of a full-scale survey and optimize the sampling design showed that: 4×500 m transects were the most cost-effective of the different sizes trialled; two transects per location comprised the most optimal allocation of replication; and 300 locations were necessary to achieve a 95% confidence interval of ±10% of the mean density found in the pilot study. Satellite imagery was used to map habitats in Torres Strait, and areas likely to be inhabited by lobsters were classified broadly into three strata: windward reef slope, submerged reef, and deep areas. The 300 locations were allocated to each stratum in proportion to its area and the estimated variance of lobster abundance within it; once allocated, the locations were positioned at random within each stratum. The main survey was undertaken over a period of 7 wk in May–June 1989, and the resulting estimate of lobster abundance was 14 million with a 95% confidence interval of ±21%. The surveyed population was sampled concurrently to determine its size structure: the pre-fishery year-class comprised 43% of the population; lobsters greater than legal-size comprised 57% and their average tail weight was 346 g. Thus, the estimate of stock size for the study area was 2200 to 3350 t tail weight, which is roughly ten-fold greater than the annual catch of about 250 t. The current catch is approaching the lower estimates of potential yield, calculated using simple maximal sustainable yield estimators, which suggests that the fishery is unlikely to be under threat at present and may support greater effort.  相似文献   

13.
S. M. Louda 《Marine Biology》1979,51(2):119-131
Searlesia dira Reeve is a locally abundant, carnivorous gastropod that occurs from Alaska to central California. I studied populations of this snail at a variety of sites on San Juan Island in order to provide information on their distribution and abundance and to analyze their community role, i.e., their potential impact on their prey populations and their dietary overlap with co-occurring invertebrate predators. I established permanent transects, both random and in crevices, at three areas of differing exposure to wave action. On these transects I recorded the number and size ofS. dira, activity, distance to nearest neighbor, other organisms present, and tidal height on four phases of the mixed semi-diurnal tidal cycle. The results are (1) an increase in density with increase in substrate relief, (2) an occurrence of highest densities in moderately exposed and exposed sites rather than in protected ones, (3) an increase in mean size with increase in depth along the intertidal gradient, (4) an increase in both total activity and feeding success on the high water immediately following an extreme minus low tide occurring during the daytime in the summer, (5) a relative restriction of feeding success to that high tide, and (6) a similarity of the diet to the relative abundance of the main observed prey for most areas. The main exceptions are chitons and one lower intertidal limpet, all of which are taken in excess of their apparent abundance and especially in the middle intertidal. The upward extension of some lower intertidal prey populations, such as chitons, may be limited by the increased susceptibility of individuals at the upper margin of the population to predators such asS. dira; susceptibility appears to be increased after periods with a higher probability of increased physiological stress, such as extreme low tides on summer days.  相似文献   

14.
Both food abundance and predation risk may influence habitat use decisions. However, studies of habitat use by birds in marine environments have focused only on food abundance. I investigated the possible influences of food abundance and predation risk from tiger sharks (Galeocerdo cuvier) on habitat use by pied cormorants (Phalacrocorax varius) over two spatial scales and on cormorant group size. Cormorants were usually solitary, but group size was highest in shallow habitats during months when shark density was low. Regardless of season, cormorant density within shallow habitats was higher over seagrass than sand, and cormorants were distributed between these two microhabitats proportional to prey density. Therefore, cormorants appear to respond to prey abundance at a relatively narrow spatial scale (i.e., tens of meters). At the habitat-patch scale (~1 km), the density of cormorants and their prey (teleosts) was higher in shallow habitats than in deep ones, but the density of cormorants was influenced by an interaction between water temperature (i.e., season) and habitat. There was decreased use of shallow habitats as water temperature, and the density of tiger sharks, increased. When shark density was low, cormorants were distributed across habitats roughly in proportion to the abundance of fish, suggesting that cormorants respond to food abundance at the scale of habitat patches. However, as shark abundance increased, the relative density of cormorants dropped in the dangerous shallow habitats such that there was a greater density of cormorants relative to their food in deep habitats when sharks were abundant. This suggests that pied cormorants trade-off food and risk by accepting lower energetic returns to forage in safer habitats. This study provides the first evidence that marine habitat selection by birds may be influenced by such a trade-off, and provides further evidence that tiger sharks are important in determining habitat use of their prey and mediating indirect interactions within Shark Bay.Communicated by P. W. Sammarco, Chauvin  相似文献   

15.
Tiger sharks are important predators in the seagrass ecosystem of Shark Bay, Australia. Although sharks appear to return to a long-term study site within the Eastern Gulf periodically, the extent of their long-term movements is not known. Five sharks fitted with satellite transmitters showed variable movement patterns. Three sharks remained within the Shark Bay region and another made a 500 km round-trip excursion to oceanic waters northwest of the bay. These four sharks showed relatively low displacement rates relative to sharks tracked over shorter time periods, suggesting that sharks move through large home ranges that include Shark Bay. Although no reliable position fixes were obtained for the fifth shark, we were able to use the timing of satellite uplinks and the position of the satellite to determine that it had moved at least 8,000 km to the coastal waters of southeast Africa in 99 days—the longest recorded movement by a tiger shark. This movement and previously documented trans-Atlantic movements suggest that tiger shark populations may mix across ocean basins and that tiger sharks are subject to anthropogenic effects at great distances from protected waters. Finally, our method for using single satellite uplinks may be useful in estimating movements for wide-ranging species that rarely provide high quality location estimates.  相似文献   

16.
An accurate estimate for orangutan nest decay time is a crucial factor in commonly used methods for estimating orangutan population size. Decay rates are known to vary, but the decay process and, thus, the temporal and spatial variation in decay time are poorly understood. We used established line-transect methodology to survey orangutan nests in a lowland forest in East Kalimantan, Indonesia, and monitored the decay of 663 nests over 20 months. Using Markov chain analysis we calculated a decay time of 602 days, which is significantly longer than times found in other studies. Based on this, we recalculated the orangutan density estimate for a site in East Kalimantan; the resulting density is much lower than previous estimates (previous estimates were 3-8 times higher than our recalculated density). Our data suggest that short-term studies where decay times are determined using matrix mathematics may produce unreliable decay times. Our findings have implications for other parts of the orangutan range where population estimates are based on potentially unreliable nest decay rate estimates, and we recommend that for various parts of the orangutan range census estimates be reexamined. Considering the high variation in decay rates there is a need to move away from using single-number decay time estimates and, preferably, to test methods that do not rely on nest decay times as alternatives for rapid assessments of orangutan habitat for conservation in Borneo.  相似文献   

17.
Mark-recapture techniques can be used to estimate white shark (Carcharodon carcharias) population abundance. These frameworks are based on assumptions that marks are conserved and animals are present at the sampling location over the entire duration of the study. Though these assumptions have been validated across short-time scales for white sharks, long-term studies of population trends are dependent on these assumptions being valid across longer periods. We use 22 years of photographic data from aggregation sites in central California to support the use of dorsal fin morphology as long-term individual identifiers. We identified five individuals over 16–22 years, which support the use of dorsal fins as long-time individual identifiers, illustrate strong yearly site fidelity to coastal aggregation sites across extended time periods (decades), and provide the first empirical validation of white shark longevity >22 years. These findings support the use of fin morphology in mark-recapture frameworks for white sharks.  相似文献   

18.
McCoy ED  Mushinsky HR 《Ecology》2007,88(6):1401-1407
Minimum patch size for a viable population can be estimated in several ways. The density-area method estimates minimum patch size as the smallest area in which no new individuals are encountered as one extends the arbitrary boundaries of a study area outward. The density-area method eliminates the assumption of no variation in density with size of habitat area that accompanies other methods, but it is untested in situations in which habitat loss has confined populations to small areas. We used a variant of the density area method to study the minimum patch size for the gopher tortoise (Gopherus polyphemus) in Florida, USA, where this keystone species is being confined to ever smaller habitat fragments. The variant was based on the premise that individuals within populations are likely to occur at unusually high densities when confined to small areas, and it estimated minimum patch size as the smallest area beyond which density plateaus. The data for our study came from detailed surveys of 38 populations of the tortoise. For all 38 populations, the areas occupied were determined empirically, and for 19 of them, duplicate surveys were undertaken about a decade apart. We found that a consistent inverse density area relationship was present over smaller areas. The minimum patch size estimated from the density-area relationship was at least 100 ha, which is substantially larger than previous estimates. The relative abundance of juveniles was inversely related to population density for sites with relatively poor habitat quality, indicating that the estimated minimum patch size could represent an extinction threshold. We concluded that a negative density area relationship may be an inevitable consequence of excessive habitat loss. We also concluded that any detrimental effects of an inverse density area relationship may be exacerbated by the deterioration in habitat quality that often accompanies habitat loss. Finally, we concluded that the value of any estimate of minimum patch size as a conservation tool is compromised by excessive habitat loss.  相似文献   

19.
Data from an aerial line transect survey conducted off West Greenland during August–September 2007 were used to estimate the abundance of long-finned pilot whales (Globicephala melas), white-beaked dolphins (Lagenorhynchus albirostris) and harbour porpoises (Phocoena phocoena). The abundance of each species was estimated using mark-recapture distance sampling techniques to correct for perception bias, and correction factors for time spent at the surface were applied. The fully corrected abundance estimates were 8,133 long-finned pilot whales, 11,984 white-beaked dolphins and 33,271 harbour porpoises. Based on density surface modelling methods, a count model with a generalised additive model formulation was used to relate abundance to spatial variables. Response curves indicated that the preferred habitats were deep offshore areas in Midwest Greenland for pilot whales, deep water over steep seabed slopes in South Greenland for white-beaked dolphins and relatively shallow inshore waters in Midwest–South Greenland for harbour porpoises. The abundance estimates and spatial trends for the three species are the first obtained from Greenland.  相似文献   

20.
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号