首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C. Lowe 《Marine Biology》2001,139(3):447-453
Oxygen consumption of juvenile scalloped hammerhead sharks, Sphyrna lewini, was measured in a Brett-type flume (volume=635 l) to quantify metabolic rates over a range of aerobic swimming speeds and water temperatures. Oxygen consumption (log transformed) increased at a linear rate with increases in tailbeat frequency and swimming speed. Estimates of standard metabolic rate ranged between 161 mg O2 kg-1 h-1 at 21°C and 203 mg O2 kg-1 h-1 at 29°C (mean-SD: 189ᆣ mg O2 kg-1 h-1 at 26°C). Total metabolic rates ranged from 275 mg O2 kg-1 h-1 at swimming speeds of 0.5 body lengths per second (L s-1) to a maximum aerobic metabolic rate of 501 mg O2 kg-1 h-1 at 1.4 L s-1. Net cost of transport was highest at slower swimming speeds (0.5-0.6 L s-1) and was lowest between 0.75 and 0.9 L s-1. Therefore, these sharks are most energy efficient at swimming speeds between 0.75 and 0.9 L s-1. These data indicate that tailbeat frequency and swimming speed can be used as predictors of metabolic rate of free-swimming juvenile hammerhead sharks.  相似文献   

2.
D. Julian  M. Chang  J. Judd  A. Arp 《Marine Biology》2001,139(1):163-173
We examined burrow irrigation activity by the mudflat worm Urechis caupo in response to suspended food, ambient hypoxia (down to 3.3 kPa PO2), hydrogen sulfide exposure (up to 100 µmol l-1), and short-term temperature change (range 10-22°C). In normoxic, nutrient-free water at 14°C, O2 consumption ( [(M)\dot]O2 ) \left( {\dot M{\rm O}_2 } \right) was 45 nmol min-1 g-1, water flow rate ( [(V)\dot]W ) \left( {\dot V_{\rm W} } \right) was 27 ml min-1 (0.66 ml min-1 g-1), frequency of peristaltic waves (FP) was 2.6 contractions min-1, stroke volume (SV) was 11 ml, and O2 extraction coefficient (EO2) was 0.27. Adding suspended food to the burrow water occasionally elicited stereotypical feeding behavior but had no effect on any measured variables during nonfeeding periods. Hypoxia greatly decreased [(M)\dot]O2 \dot M{\rm O}_2 (75% reduction at 3.3 kPa PO2) but did not affect [(V)\dot]W \dot V_{\rm W} , FP, SV, or EO2. Sulfide at 50 µmol l-1 or less had no effect on burrow irrigation activity, whereas 100 µmol l-1 sulfide decreased [(V)\dot]W \dot V_{\rm W} by 58% and FP by 50% but had no effect on SV. Temperature strongly affected [(V)\dot]W \dot V_{\rm W} (Q10 of 1.9 from 10°C to 22°C). We propose that U. caupo's ability to live in the hypoxic, sulfidic mud of productive mudflat environments, combined with its very efficient mucous net, allows it to process much less water for feeding than other suspension-feeding invertebrates. This, in turn, necessitates an efficient O2 extraction mechanism, which is provided by the water lung activity of U. caupo's unique hindgut.  相似文献   

3.
The influence of oxygen concentration on total and basal metabolism, scope of activity, drag force and duration of jerks, time spent swimming and energy cost of locomotion in Moina micrura Hellich females cultured under hypo- and normoxia was investigated. Scope of activity (Ql) of hemoglobin-rich red individuals (Ma) acclimated to hypoxia depended less upon oxygen concentration than that of non-acclimated, pale individuals (Mna). Within the range 10-0.3 mg O2 l-1 Ql decreased 4.4-fold in Ma and 62.5-fold in Mna. In both Ma and Mna the integral drag force of antenna fell from 0.22ǂ.07 to 0.12ǂ.04 dyn (1 dyn=1·10-5 N), the duration of jerks increased from 0.06ǂ.01 to 0.1ǂ.02 s in the range from ~2.0 mg O2 l-1 to sublethal oxygen concentrations. At 0.7-0.8 mg O2 l-1 Mna stopped filtration and increased time spent swimming. In contrast, even under more severe hypoxia (~0.2 mg O2 l-1), Ma maintained their filtering activity using energy (up to 80% of total metabolism) achieved due to increased oxygen capacity of the blood. Separating locomotion and feeding functions, M. micrura can spend less energy for swimming and use its energy budget more plastically under changing environmental conditions.  相似文献   

4.
Adaptive processes linked to overall metabolism were studied in terms of oxygen consumption and ammonia excretion in each of three self-contained krill populations along a climatic gradient. In the Danish Kattegat, krill were exposed to temperatures which ranged from 4°C to 16°C between seasons and a vertical temperature gradient of up to 10°C during summer. In the Scottish Clyde Sea, water temperatures varied less between seasons and the vertical temperature gradient in summer was only 3°C. Temperatures in the Ligurian Sea, off Nice, were relatively constant around 12-13°C throughout the year, with a thin surface layer (20-30 m) of warm water developing during summer. The trophic conditions were rich in the Kattegat and, particularly, in the Clyde, but comparatively poor in the Ligurian Sea. Oxygen consumption increased exponentially with increasing experimental temperature, which ranged from 4°C to 16°C. Overall respiration rates were between 19.9 and 89.9 µmol O2 g-1 dry wt h-1. Krill from the Kattegat, the Clyde Sea, and the Ligurian Sea all exhibited approximately the same level of oxygen consumption (30-35 µmol O2 g-1 dry wt h-1) when incubated at the ambient temperatures found in their respective environments (9°C, 5°C, and 12°C). This indicates that krill adjust their overall metabolic rates to the prevailing thermal conditions. The exception to this were the respiration rates of Ligurian krill from winter/spring, which were about twice as high as the rates from summer krill despite the fact that the thermal conditions were the same. This effect appears to result from enhanced somatic activity during a short period of increased food availability and reproduction. Accordingly, krill appears to be capable of adapting to both changing thermal and trophic conditions, especially when nutrition is a limiting factor in physiological processes.  相似文献   

5.
K. Hollertz 《Marine Biology》2002,140(5):959-969
This study of the burrowing heart urchin Brissopsis lyrifera includes measurements on feeding and food selection, ingestion rate, absorption efficiency, ventilation and respiration. B. lyrifera regulated feeding depth, ingestion rate and absorption efficiency in relation to food source. When food was added to the top layer of sediment, B. lyrifera burrowed closer to the surface and ingested mainly enriched surface material, whereas it burrowed deeper and ingested deep-seated sediment in the controls. In non-enriched sediment, the feeding rate was 0.04 g sediment DW h-1 ind.-1, and, in macro- and microalga-enriched sediment the feeding rate was 0.06 and 0.08 g sediment DW h-1 ind.-1, respectively. Absorption efficiency of TOC was about 43% in non-enriched sediment and in microalga-enriched sediment, but was significantly lower (34%) in macroalga-enriched sediment. Absorption efficiency of N varied between 48% and 55%, and was independent of food source. B. lyrifera feed selectively, enriching the gut TOC content about 2-fold and N content about 2.5-fold. The C/N ratio was therefore lower within the gut compared to the surrounding sediment, while the faecal C/N ratio was almost equal to the surrounding sediment. The faeces were, however, slightly richer in TOC and N compared to the surrounding sediment. For 3-5 cm long B. lyrifera, water current rate varied between 4 and 24 ml water h-1, with a mean of 11 ml h-1. Mean respiration rate was 205 µl O2 h-1 ind.-1. The water current rate was not sufficient for B. lyrifera to sustain itself by filter feeding only. However, organic-rich particles from the surface are suggested to be an important contribution to the diet. A carbon budget was calculated for B. lyrifera from measured values of consumption, absorption efficiency and respiration, in order to estimate annual production of B. lyrifera. Compared to literature values, growth was overestimated about tenfold in the budget. A large proportion of the absorbed carbon was suggested to leave the animal as dissolved carbon, through mucus production or through anaerobic pathways, either by the heart urchin or by micro-organisms in the gut.  相似文献   

6.
The early development of Odontaster validus at McMurdo Sound, Antarctica, is indirect and includes equal cleavage, a convoluted blastula, a free-swimming coeloblastula, a gastrula, and a feeding bipinnaria larva. Development differs from that of other asteroids in two respects: (1) The developmental rate is extremely slow; blastulae form nearly 2 days after fertilization, gastrulation begins after 7 days, and the bipinnaria develops in about 40 to 55 days. The slow developmental rate appears to be only partly related to the low environmental temperature (-1.5°C). (2) The embryos and larvae are largely demersal. Such behavior may be an adaptation to keep the larvae out of antarctic surface waters, as does brooding in many other polar echinoderms.  相似文献   

7.
The subtidal crab Cancer pagurus (L.) experiences involuntary periods of emersion associated with practices used in their marketing and distribution. During 24 h emersion, impaired gill function caused an increase of circulating total ammonia (TA=NH3+NH4+) of 0.35 mmol TA l-1 (167%). The oxygen-binding characteristics of the haemocyanin of C. pagurus were examined at 10°C in the presence of total ammonia (0.2-1.0 mmol TA l-1). The haemocyanin-oxygen affinity was decreased in the presence of TA ((logP50/(log[TA]=0.16). Emersion induced significant acidosis and elevated circulating levels of haemolymph TA, lactate and urate, but all had returned to normal levels within 24 h of re-immersion. The accumulation of haemocyanin-modulating substances during 24 h emersion compensated partially (40%) for the effect of the acidosis, but the net effect of the emersion period was a significant decrease in oxygen affinity, corresponding to an increase of P50 (10°C ) from 1.24 kPa (immersed) to 1.96 kPa (24 h emersion). The implications of the findings are considered in terms of the effects and adaptations to emersion.  相似文献   

8.
Stable oxygen and carbon isotope profiles ('18Oskeletal and '13Cskeletal), taken along the direction of growth from the umbo to the shell margin in shells of the pinnid Pinna nobilis, were used to reconstruct sea surface temperatures (SST) in the south-east Mediterranean and ontogenetic records of metabolic CO2 incorporation. Comparison of the seasonal cycle of SST, predicted from the '18Oskeletal record of a small (young) rapidly growing pinnid and temperature measured with a continuous in situ recorder showed that P. nobilis calcifies under isotopic equilibrium with surrounding seawater, thus indicating that P. nobilis shells can be used as a reliable predictor of SST. A 10-year SST record for the south-east Mediterranean was reconstructed from the shell profiles of four pinnid shells of different sizes and ages collected in 1995 and 1996. Reliable resolution of the seasonal SST could only be achieved during the first 4 years of shell growth. As the pinnids grew older, the temperature record was poorly resolved because the shell growth had diminished with age, resulting in time-averaging of the record. The amplitude of the generated seasonal temperature cycle compared favourably (DŽ°C) with a long-term temperature record from northern Mediterranean waters. Clear seasonal cycles in '13Cskeletal were observed with an amplitude of ~1.0‰, similar to the calculated seasonal changes in '13C of seawater (0.6‰) overlying seagrass meadows. An ontogenetic trend towards less positive '13Cskeletal values was too large to be attributed to any decrease in '13C in seawater resulting from the invasion of anthropogenic CO2. It is suggested that the temporal changes of '13Cskeletal are due to incorporation of respiratory CO2 into the extrapallial fluid and reflect changes in the metabolic activity of the pinnid rather than changes in the isotopic composition of dissolved inorganic carbon within the surrounding seawater.  相似文献   

9.
Sediment reworking due to burrowing and feeding was studied in the spatangoid Brissopsis lyrifera, at two different temperatures (7°C and 13°C). Spine activity and burrowing behaviour were recorded with a real-time video camera. Reworked sediment volume was calculated from tracks produced by the heart urchin. Ingestion rates were measured by feeding the heart urchins with luminophores. Temperature had a significant effect on the bioturbation activity of B. lyrifera. At 13°C reworked sediment volume due to burrowing was 22 ml sediment h-1 and at 7°C 14 ml sediment h-1. The ingested amount of sediment was 0.08 and 0.02 g dry sediment h-1 in 13 and 7°C, respectively. Reworked sediment volume due to burrowing was 60-150 times higher than the volume ingested. The large reworked volume is a consequence of B. lyrifera moving with a rocking motion through the sediment. The spines were continuously transporting sediment around the test with 5-min metachronal wave cycles.  相似文献   

10.
W. Fitt  C. Cook 《Marine Biology》2001,139(3):507-517
The availability of solid food (Artemia nauplii) and dissolved inorganic nutrients (ammonium, nitrate, phosphate) to the shallow-water marine hydroid Myrionema amboinense was manipulated for 1-8 days in order to investigate their role in the growth of intracellular symbiotic dinoflagellates (zooxanthellae) of the genus Symbiodinium. Symbionts from hydroids collected from the field or maintained under laboratory conditions (25°C, 12 h:12 h light:dark cycle, 80 µE m-2 s-1 fluorescent lighting) always exhibited a single peak in mitotic index (MI) at dawn. Symbionts in freshly collected field animals had an MI peak of about 15%. Symbiotic dinoflagellates in hydroids fed Artemia nauplii twice daily in the laboratory maintained this dawn peak of MI between 10% and 15%, but in the absence of feeding or added inorganic nutrients, this peak declined to less than 1% within 2-4 days. In contrast, when hydroids were placed in solutions containing ammonium (20 µM NH4Cl), nitrate (10 µM NaNO3), and a combination of ammonium and phosphate (2 µM Na2HPO4) immediately after collection, the algal MI remained between 5% and 15% for 4-7 days; the addition of 2 µM phosphate did not increase MI relative to unfed rates. When unfed animals were placed in dissolved nitrogen or fed Artemia, the symbiont MI increased from <1% to 10-17% within 2-3 days; P alone had no effect. However, the increase resulting from added inorganic nutrients was temporary, lasting only 5-7 days. These observations suggest that algal division in the host is maintained indefinitely in the field or by feeding particulate foods twice daily in the laboratory, but the addition of inorganic nutrients alone (ammonium, nitrate and ammonium/phosphate) appeared to support the completion of a maximum of one additional round of cell division. Nutrients required for continued growth and division of symbiotic dinoflagellates are linked to host feeding and host growth; without external food, neither host nor symbiont continue to grow. The same phenomenon is seen in zooxanthellate anemones, clams and corals, where total numbers of symbionts appear to be linked to changes in host-tissue biomass (protein), achieving relatively stable densities in M. amboinense, corals and other cnidarian symbioses, depending on their local environmental conditions. The results of the present study help explain the cellular responses of algal symbionts in reef-dwelling invertebrates to additions of dissolved inorganic nutrients to coral-reef ecosystems.  相似文献   

11.
The availability of different forms of nitrogen in coastal and estuarine waters may be important in determining the abundance and productivity of different phytoplankton species. Although urea has been shown to contribute as much as 50% of the nitrogen for phytoplankton nutrition, relatively little is known of the activity and expression of urease in phytoplankton. Using an in vitro enzyme assay, urease activities were examined in laboratory cultures of three species: Aureococcus anophagefferens Hargraves et Sieburth, Prorocentrum minimum (Pavillard) Schiller, and Thalassiosira weissflogii (Grunow) Fryxell et Hasle. Cultures of P. minimum and T. weissflogii were grown on three nitrogen sources (NO3m, NH4+, and urea), while A. anophagefferens was grown only on NO3m and urea. Urease was found to be constitutive in all cultures, but activity varied with growth rate and assay temperature for the different cultures. For A. anophagefferens, urease activity varied positively with growth rate regardless of the N source, while for P. minimum, urease activity varied positively with growth rate only for cultures grown on urea and NH4+. In contrast, for T. weissflogii, activity did not vary with growth rate for any of the N sources. For all species, urease activity increased with assay temperature, but with different apparent temperature optima. For A. anophagefferens, in vitro activity increased from near 0-30°C, and remained stable to 50°C, while for P. minimum, increased in vitro activity was noted from near 0-20°C, but constant activity was observed between 20°C and 50°C. For T. weissfloggii, while activity also increased from 0°C to 20°C, subsequent decreases were noted when temperature was elevated above 20°C. Urease activity had a half-saturation constant of 120-165 wg atom N lу in all three species. On both an hourly and daily basis, urease activity in A. anophagefferens exceeded nitrogen demand for growth. In P. minimum, urease activity on an hourly basis matched the nitrogen demand, but was less than the demand on a daily basis. For T. weissflogii, urease activity was always less than the nitrogen demand. These patterns in urease activity in three different species demonstrate that while apparently constitutive, the regulation of activity was substantially different in the diatom. These differences in the physiological regulation of urease activity, as well as other enzymes, may play a role in their ecological success in different environments.  相似文献   

12.
Although the ichthyotoxic mechanism of Chattonella marina is still unknown, several lines of evidence suggest that the reactive oxygen species (ROS), such as superoxide anion (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (·OH), produced by C. marina are involved in the mortality of fish exposed to this flagellate. Recently, we found that the cell-free supernatant prepared from C. marina, which is considered to contain the glycocalyx, showed NADPH-dependent O2- generation. In this study, we prepared antiserum against the crude glycocalyx of C. marina. Using indirect immunofluorescence, it was confirmed that the antiserum specifically reacted with C. marina cells. In addition to C. marina, the antiserum also reacted with other raphidophycean flagellates such as Heterosigma akashiwo, Olisthodiscus luteus, and Fibrocapsa japonica, whereas no reactivity was observed against six other flagellate species tested. These results suggest that raphidophycean flagellates have common epitopes recognized by the antiserum. Interestingly, immunohistochemical analysis of paraformaldehyde-fixed gill lamellae from yellowtail exposed to C. marina revealed that the antiserum stained the surface of gill lamellae, while no such staining pattern was observed in control gill lamellae. These results suggest that the glycocalyx may be discharged when C. marina cells are inhaled into the fishes' mouths and then come into contact with the gill surface. Based on the present results, together with our previous findings, we propose that continuous accumulation of the discharged glycocalyx on the gill surface occurs during C. marina exposure, which may be responsible for the ROS-mediated severe gill tissue damage leading to fish death.  相似文献   

13.
Biomass, photosynthesis and growth of the large, perennial brown alga Laminaria saccharina (L.) Lamour. were examined along a depth gradient in a high-arctic fjord, Young Sound, NE Greenland (74°18'N; 20°14'W), in order to evaluate how well the species is adapted to the extreme climatic conditions. The area is covered by up to 1.6-m-thick ice during 10 months of the year, and bottom water temperature is <0°C all year round. L. saccharina occurred from 2.5 m depth to a lower depth limit of about 20 m receiving 0.7% of surface irradiance. Specimen density and biomass were low, likely, because of heavy ice scouring in shallow water and intensive feeding activity from walruses in deeper areas. The largest specimens were >4 m long and older than 4 years. In contrast to temperate stands of L. saccharina, old leaf blades (2-3 years old) remained attached to the new blades. The old tissues maintained their photosynthetic capacity thereby contributing importantly to algal carbon balance. The photosynthetic characteristics of new tissues reflected a high capacity for adaptation to different light regimes. At low light under ice, or in deep water, the chlorophyll a content and photosynthetic efficiency (!) were high, while light compensation (Ec) and saturation (Ek) points were low. An Ec of 2.0 µmol photons m-2 s-1 under ice allowed photosynthesis to almost balance, and sometimes exceed, respiratory costs during the period with thick ice cover but high surface irradiance, from April through July. Rates of respiration were lower than usually found for macroalgae. Annual elongation rates of leaf blades (70-90 cm) were only slightly lower than for temperate L. saccharina, but specific growth rates (0.48-0.58 year-1) were substantially lower, because the old blades remained attached. L. saccharina comprised between 5% and 10% of total macroalgal biomass in the area, and the annual contribution to primary production was only between 0.1 and 1.6 g C m-2 year-1.  相似文献   

14.
Sublethal effects on larval crabs upon exposure to toxic dinoflagellates were examined in the laboratory in early 1999. Specifically, oxygen consumption rates and geotaxis responses were determined for stage 1 larvae of the crabs Cancer oregonensis (Dana) and C. magister Dana that were exposed to non-toxic (Alexandrium tamarense, strain 115) or toxic (A. fundyense, strain 1719) dinoflagellates or to freshly hatched nauplii of the brine shrimp Artemia sp. In C. oregonensis, larvae exposed to the toxic dinoflagellate showed reduced rates of oxygen consumption compared to those exposed to non-toxic dinoflagellates or brine shrimp nauplii. Larvae exposed to a filtrate of the non-toxic dinoflagellate showed no change in oxygen consumption, but a reduced rate when exposed to filtrate from the toxic alga at densities >5᎒2 cells ml-1. In C. magister, larvae exposed to the non-toxic A. tamarense or the toxic A. fundyense had reduced oxygen consumption rates. Larvae exposed to filtrates of non-toxic and toxic dinoflagellates had no change in oxygen consumption. In geotaxis tests, C. oregonensis larvae exposed for 1 day to the toxic A. fundyense reduced their level of locomotion compared to those exposed to non-toxic A. tamarense or to brine shrimp nauplii. C. magister larvae showed no change in activity after a 1-day exposure to the toxic A. fundyense. After a 4-day exposure to A. fundyense, C. magister larvae had much reduced locomotion. Reduced locomotory activity in larvae exposed to toxic algae is consistent with the changes in oxygen consumption rates. Responding to exposure to toxic algae by reducing locomotion may affect vertical migration in these negatively buoyant crab larvae, resulting in sinking below a toxic alga bloom, at least temporarily.  相似文献   

15.
The present study was undertaken to determine the effects of both extracapsular oxygen concentration and temperature on embryonic development in Chorus giganteus. In normoxia increasing water temperature from 12°C to 18°C reduced by 15 days the median time required for the capsules to hatch. Hypoxia (oxygen content at 50% of air saturation) generated a low development rate and totally prevented both shell secretion and larval hatching from the egg capsule. Experimental transfer at weekly intervals, from normoxia to hypoxia and vice versa, induced a decrease and increase in the embryonic ash content, respectively, but did not affect the number of hatched larvae. Such an effect was more pronounced at 12°C than at 15°C or 18°C. The embryonic inability to produce a shell under hypoxia is likely to be a result of the low intracapsular oxygen concentration (IPO2) generated as the combined effect of a low extracapsular oxygen concentration (environmental) added to the intracapsular embryonic oxygen demands, which lowers the IPO2 still further. Under such conditions, a decrease in intracapsular pH is likely to take place, and, if so, embryos might divert carbonates away from shell calcification to balance such changes in pH.  相似文献   

16.
The common Antarctic nudibranch Austrodoris kerguelenensis (Bergh) contains diterpene diacylglycerides only present in its external body parts. These compounds provide a chemical defense against sympatric predators, such as the seastar Odontaster validus Koehler. Bioassays conducted with O. validus revealed that live nudibranchs, mantle tissue and Et2O extract of the A. kerguelenensis mantle deterred feeding by the seastar. Further bioassays testing organic fractions of the Et2O mantle extract showed that the diterpene diacylglycerides, as well as corresponding monoacylglycerides and monoacylglycerides of regular fatty acids, were responsible for the feeding deterrence in O. validus. We suggest that A. kerguelenensis derives the bioactive diacylglycerides by de novo biosynthesis rather than by sequestration from its sponge diet, since the mollusk does not contain active metabolites in the viscera, and neither the active compounds nor precursors were detected in the sponge diet. Furthermore, A. kerguelenensis did not show a strong chemodetection or feeding preference for its main diet, hexactinellid sponges, in Y-maze and food choice experiments, respectively.  相似文献   

17.
Changes in the contents of free amino acids (FAA), Mr 170,000 lipovitellin (oLv B), that is the major yolk protein in ovulated eggs, and lipids were measured in developing eggs and yolk-sac larvae of barfin flounder (Verasper moseri) to elucidate the sequential utilization of these nutrient stocks before the first feed. Hatching takes place on the 10th day after fertilization at a water temperature of 8°C, and the hatched larvae absorb almost all of their yolk masses within 21 days after fertilization. The total FAA content showed no change during the first 4 days, then decreased to about 13% of the initial level by the 13th day after fertilization. During the consumption of FAA, non-essential amino acids tend to decrease earlier than essential amino acids. The native molecular weight and immunoreactivity of Mr 170,000 oLv B did not show any change during the first 16 days after fertilization, though the sodium dodecyl sulphate-polyacrylamide gel electrophoresis patterns of oLv B showed a serial change. The oLv B contents, measured by quantitative immunodiffusion using antiserum against oLv B of ovulated eggs, were approximately stable during the 13 days after fertilization, then decreased rapidly until the end of yolk-sac absorption. Phospholipids (PL), which seem mostly to bind with lipovitellin-proteins, decreased gradually after hatching coincident with the decrease in oLv B and Mr 330,000 lipoprotein. From these results, we conclude that there are three periods for sequential nutrient utilization in barfin flounder embryos and larvae: (1) pre-FAA utilization period, 0-4th day; (2) FAA utilization period, 4th-13th day; (3) oLv B and PL utilization period, 16th-21st day post-fertilization.  相似文献   

18.
We conducted experiments to determine the effect of the increasing ultrasonic/radio transmitter weight on the routine metabolic rate of sea bass. We measured the oxygen consumption (MO2) of fish tagged externally with a dummy transmitter made of a hollow pipe, the weight of which was adjusted with lead to represent in water 0, 1 and 4% (Rtf) of the animal weight. We then developed a theoretical model to estimate, for a given fish size, the range of added weight that fish can compensate for through swimbladder regulation. When RtfБ%, MO2 of untagged and tagged fish did not differ significantly. However, when Rtf reached 4%, fish that carried a tag incurred a significant elevation of oxygen consumption, which represented 28% of their total useable power (or metabolic scope). This result strongly supports the view that a high Rtf ratio contributes to a decrease in available metabolic energy by diverting energy from, e.g., growth or swimming performance. A comparison between the tagged fish and the theoretical model reinforced the hypothesis that, when Rtf attained 4%, the increase in metabolic rate reflected a supplementary and costly swimming effort necessary to maintain vertical position. In this condition, the swimbladder cannot regulate the buoyancy of tagged fish.  相似文献   

19.
We developed a predictive relationship to determine the grazing rate of Brachionus plicatilis at given temperatures and food concentrations; this function could be applied to experimental culturing and aquaculture practices. Grazing experiments were conducted at temperatures between 5°C and 40°C and at food concentrations, of the flagellate Isochrysis galbana, ranging between ~0 and 106 ml-1. In total, 136 grazing rates were determined, using the prey depletion method, for rotifers acclimated to treatments for 0.5 or 4 h. The response of grazing rate to temperature and food concentration was described using a model that combined a rectangular hyperbolic function for food concentration and a sigmoidal function for temperature. Using non-linear curve-fitting methods an equation was obtained: G=(452F)/(159000+F)Ǵ.94/(1+2190002T-4.35) , where G is the grazing rate (flagellates rotifer-1 min-1), F is the food concentration (flagellates ml-1), and T is temperature (°C). The equation indicates a maximum grazing rate of ~35 prey rotifer-1 min-1, above ~4᎒5 prey ml-1 and 25°C.  相似文献   

20.
Metabolic rates (oxygen consumption, ammonia excretion, phosphate excretion) have been calculated as a function of body mass (dry, carbon, nitrogen and phosphorus weights) and habitat temperature, using multiple regression. The metabolic data used for this analysis were species structured, collected from Arctic to Antarctic seas (temperature range: -1.7°C to 29.0°C). The data were further divided into geographical and/or seasonal groups (35 species and 43 data sets for oxygen consumption; 38 species and 58 data sets for ammonia excretion; 22 species and 31 data sets for phosphate excretion). The results revealed that the variance attributed to body mass and temperature was highest (93-96%) for oxygen consumption rates, followed by ammonia excretion rates (74-80%) and phosphate excretion rates (46-56%). Among the various body mass units, the best correlation was provided by the nitrogen unit, followed by the dry weight unit. The calculated Q10 values varied slightly according to the choice of body mass units; overall ranges were 1.8-2.1 for oxygen consumption rates, 1.8-2.0 for ammonia excretion rates and 1.6-1.9 for phosphate excretion rates. The effects of body mass and temperature on the metabolic quotients (O:N, N:P, O:P) were insignificant in most cases. Although the copepod metabolic data used in the present analysis were for adult and pre-adult stages, possible applications of the resultant regression equations to predict the metabolic rates of naupliar and early copepodite stages are discussed. Finally, global patterns of net growth efficiency [growth (growth+metabolism)-1] of copepods were deduced by combining the present metabolic equation with Hirst and Lampitt's global growth equation for epipelagic marine copepods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号