首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cardenolide sequestration by a hemimetabolous aphid and a holometabolous butterfly from the neotropical milkweed,Asclepias curassavica L., is compared. The oleander aphid,Aphis nerii B. de F., sequestered a similarly narrow range of cardenolide concentrations to the monarch butterfly,Danaus plexippus (L.), from the wide range of concentrations available in leaves of A.curassavica. However, A.nerii sequestered significantly less cardenolide (269 µg/0.1 g) thanD. plexippus (528 µg/0.1 g). The honeydew excreted by A.nerii was comprised of 46% cardenolide. The complete polarity range of 25 cardenolides detected by thin layer chromatography in A.curassavica was represented in the 17 whole aphid cardenolides and the 20 aphid honeydew cardenolides detected. D.plexippus sequestered a narrower polarity range of 11 cardenolides, having eliminated low polarity cardenolide genins and glycosides. It is suggested that these chemical differences may be related to interactions among the broad feeding tactics of sucking or chewing milkweed leaves, life history constraints of holometabolyversus hemimetaboly, the distribution of milkweed food resources in space and time, and the dynamics of natural enemies.  相似文献   

2.
Malcolm  Stephen B. 《Chemoecology》1994,5(3-4):101-117
Summary The contribution of Miriam Rothschild to the monarch cardenolide story is reviewed in the light of the 1914 challenge by the evolutionary biologist, E.B. Poulton for North American chemists to explain the chemical basis of unpalatability in monarch butterflies and their milkweed host plants. This challenge had lain unaccepted for nearly 50 years until Miriam Rothschild took up the gauntlet and showed with the help of many able colleagues that monarchs are aposematically coloured because they sequester toxic cardenolides from milkweed host plants for use as a defence against predators. By virtue of Dr Rothschild's inspiration and industry, and subsequently that of Lincoln Brower and his colleagues, this tritrophic interaction has become a familiar paradigm for the evolution of chemical defences and warning colouration. We now know that the cardenolide contents of different milkweeds vary quantitatively, qualitatively and spatially, both within and among species and we are starting to appreciate the implications of such variation. However, as Dr Rothschild has pointed out in her publications, cardenolides have sometimes blinded us to reality and it is curious how little evidence there is for a defensive function to cardenolides in plants — especially against adapted specialists such as the monarch. Thus the review will conclude with a discussion of the significance of temporal variation and induction of cardenolide production in plants, the lethal plant defence paradox and an emphasis on the dynamics of the cardenolide-mediated interaction between milkweeds and monarch larvae.  相似文献   

3.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

4.
Summary. Late instar larvae of the monarch butterfly (Danaus plexippus L., Lepidoptera: Nymphalidae) deactivate the latex defense of milkweeds by chewing a furrow in the leaf midrib or petiole. The larva then feeds beyond the cut where latex outflow is minimal. If a larva does encounter latex exudate during feeding, it often returns to its initial cut to damage the midrib or petiole more extensively before resuming feeding. We used this response to latex as an assay for testing what cue triggers vein cutting. A sticky solution of polyethylene glycol and a mixture of cardenolides both were ineffective; drops applied to the mouthparts of feeding monarchs failed to elicit renewed vein cutting. Activity resided instead within a methanol extract of the supernatant obtained from centrifuged latex of the milkweed, Asclepias curassavica L. (Asclepiadaceae). Treatment with proteinase K did not eliminate activity documenting that the active compound is unlikely to be proteinaceous. Our results indicate that latex adhesiveness and low polarity cardenolides are relatively unimportant releasers of vein cutting. We propose that milkweeds contain noncardenolide stimulants of vein cutting; these compounds presumably serve a defensive role for milkweeds. Over 50 species of insects are known to employ vein-cutting before feeding on plants with canal-borne exudates; most of these species are dietary specialists like the monarch. Our behavioral assay provides a novel approach for identifying ecologically-significant compounds in the exudates of their diverse host plants.  相似文献   

5.
Growth rate and survival of first-instar larvae of Danaus plexippus, a milkweed specialist, depended on milkweed species, and was related to the amount of latex produced from wounds, leaf cardenolide concentrations and the presence of leaf hairs. Larval growth was more rapid and survival was higher on leaves of Asclepias californica with experimentally reduced latex, and this species has characteristically high latex, low- to mid-range cardenolide concentrations, and very hirsute leaves. Similarly, growth was higher on reduced latex leaves of both A. eriocarpa (a high latex/high cardenolide, hirsute species) and A. erosa (glabrous fleshy leaves, high latex/high cardenolides). There were no differences in either survival or growth rate between larvae on reduced latex or control leaves of the low latex/low cardenolide A. fascicularis with soft glabrous leaves and both survival and growth rate were higher on this species than the other species tested. Larval growth rates on leaves with reduced latex were similar among ten milkweed species tested to date but differed from growth rates on intact leaves suggesting that latex and possibly included cardenolides are both important in first-instar monarch larval growth, development and survival. We show for a range of ecologically important milkweeds that experiments on cut plant material (no latex outflow) lead to higher growth rates compared to intact plants. Such laboratory assays based on detached leaves will be misleading if the objective is to determine the impact of treatments such as Bt-maize pollen on monarchs on field plants.  相似文献   

6.
Summary Peromyscus melanotis is the only one of three mouse species that eats monarch butterflies at their overwintering sites in Mexico. I tested two hypotheses: 1)P. aztecus avoids monarchs because of a bitter taste aversion to cardiac glycosides (CGs) and an inability to reject CG-rich body parts; 2)Reithrodontomys sumichrasti avoids monarchs principally because of a bitter taste aversion to the CGs. None of the species are sensitive to the toxic effects of ingested CGs. Feeding responses of laboratory-reared mice of each species to monarchs with low, medium and high CG concentrations were compared. BothP. aztecus andR. sumichrasti ate significantly fewer of all three types of monarchs thanP. melanotis. ForP. aztecus andR. sumichrasti, the number of monarchs eaten decreased with increasing CG concentration, whereas forP. melanotis, the number remained constant.Peromyscus melanotis andR. sumichrasti developed a feeding technique for rejecting the CG-laden cuticular material, which reduced the bitterness of ingested monarch material. However,R. sumichrasti displayed the technique significantly less often thanP. melanotis; andP. aztecus never developed it. I conclude that high taste sensitivity to CGs and less versatile food handling preventP. aztecus andR. sumichrasti from overcoming the monarch's chemical defenses.  相似文献   

7.
Summary Of three common mouse species at the Mexican overwintering sites of the monarch butterfly, onlyPeromyscus melanotis eats monarchs. We hypothesized thatP. aztecus andReithrodontomys sumichrasti reject monarchs because they are more sensitive to the bitter taste and/or toxic effects of the cardiac glycosides (CGs) and pyrrolizidine alkaloids (PAs) in the butterflies. Two-choice preference tests revealed no difference in taste avoidance thresholds to free base and N-oxide forms of the PA, monocrotaline, but very different avoidance thresholds to the CG, digitoxin. Avoidance thresholds forR. sumichrasti andP. aztecus were, in respective order, 1020 and 34 times less than that forP. melanotis. We also tested the toxic sensitivity of juvenile mice by chronically feeding diets containing digitoxin or monocrotaline at concentrations similar to those used in the preference tests. No species developed CG toxicity, but bothP. melanotis andP. aztecus developed moderate PA toxicity (R. sumichrasti was not tested for PA toxicity).P. aztecus grew more slowly and manyP. melanotis had hepatic metabolic lesions. Thus, the three mouse species responded very differently to the taste and toxic properties of CGs and PAs at ecologically relevant concentrations: 1) CGs were taste rejected by all species exceptP. melanotis, while PAs were not; and 2) PAs were toxic, while CGs were not.  相似文献   

8.
Summary Larvae of the ithomiine butterflyPlacidula euryanassa sequester tropane alkaloids (TAs) from the host plantBrugmansia suaveolens and pass them through the pupae to freshly emerged adults. Wild caught adults also show in their tissues, variable amounts of pyrrolidizine alkaloids (PAs), probably sequestered from variable plant sources and subject to dynamics of incorporation, accumulation and utilization of PAs by ithomiine butterflies. The ratio TAs/PAs is also variable between different populations.Miraleria cymothoe, another ithomiine that feeds onB. suaveolens as larvae, does not sequester TAs from the host-plant, but sequesters PAs from plant sources visited by the adult butterflies. The main alkaloid found in both butterflies is lycopsamine, which also is the principal PA found in all genera of Ithomiinae.  相似文献   

9.
Summary. The Na+, K+-ATPase of the Monarch butterfly (Danaus plexippus) is insensitive to the inhibition by cardiac glycosides due to an amino acid replacement: histidine instead of asparagine at position 122 of the α-subunit representing the ouabain binding site. By PCR amplification of the DNA sequence of this site, a PCR product of 270 bp was obtained from DNA extracted from Danainae species (Danaus plexippus, D. chrysippus, D. gillipus, D. philene, D. genutia, Tirumala hamata, Euploea spp., Parantica weiskei, P. melusine), Sphingidae (Daphnis nerii) and mimics of milkweed butterflies (Hypolimnas missipus, Limenitis archippus and L. arthemis, Nymphalidae). Analysis of the nucleotide sequences revealed that the single point mutation in the ouabain binding domain (AAC-Asn for CAC-His) was present only in Danaus plexippus, but not in the other species investigated. Since these milkweed butterflies also store cardenolides, other structural modifications of the Na+, K+-ATPase may have occurred or other strategies of cardenolide tolerance have been developed. Received 15 May 2000; accepted 29 June 2000  相似文献   

10.
Little is known about how plant nutritional and defensive qualities interact to influence predator–prey interactions. To address this need, we provided the neo-tropical milkweed, Asclepias curassavica, with two levels of nitrogen availability and examined how altered host-plant quality influenced the responses of a specialist aphid, Aphis nerii, and a coccinellid predator, Harmonia axyridis. Aphis nerii uses A. curassavica for multiple resources, including nutrition and sequestration of cardenolides for defense against natural enemies. Increased nitrogen availability improved A. curassavica quality by decreasing carbon-to-nitrogen (C:N) ratios and cardenolide concentrations, resulting in A. nerii that also had lower C:N ratios and cardenolide concentrations. Aphis nerii population growth was higher on plants with high nitrogen availability, compared with aphids on plants with low nitrogen availability. In no-choice feeding trials, Harmonia axyridis consumed more high C:N ratio aphids, suggesting a potential compensatory response to reduced aphid nutritional quality. Additionally, H. axyridis were able to consume more low-quality aphids at the expense of increasing exposure to increased cardenolide concentrations, suggesting that interactions between H. axyridis and A. nerii may be strongly influenced by prey nutritional quality. This work highlights the need to consider how variation in plant quality influences herbivore nutritional and defensive quality when examining mechanisms that influence predator–prey interactions.  相似文献   

11.
Summary Life stages of the primitive Australian ithomiine butterflyTellervo zoilus and its larval hostplant, the apocynaceous vineParsonsia straminea, were quantitatively assayed for pyrrolizidine alkaloids (PAs). PAs were found in all stages, mainly as N-oxides, being most concentrated in larvae and freshly-emerged adults. Although adults feed at various confirmed PA sources this probably does not compensate for losses, as wild-caught adults had considerably lower concentrations of PAs. The main alkaloid present in both freshly-emerged adults and in leaves of the host-plant was lycopsamine (1b), stored by butterflies in the N-oxide form. Its presence in higher proportion, in relation to intermedine (1a), in larvae, pupae and adults ofTellervo in relation to the host-plants suggests the inversion of intermedine to lycopsamine by the insects. No 14-member ring macrocyclic PAs were detected in either food-plant or butterflies. Several other PAs were found in wild-caught adults reflecting visits to other PA sources. PAs were also found in high concentrations in freshly-emerged individuals of the danaineEuploea core bred onParsonsia straminea. Wild-caughtDanaus affinis had high PA levels acquired from adult feeding. Freshly emergedEuploea raised onIschnocarpus frutescens andDanaus raised onIschnostemma carnosum (both PA-free) were preyed on by the orb weaving spiderNephila maculata, and showed no PAs. In all cases where PAs were present, most butterflies were liberated, usually cut out of the web unharmed, byNephila. The spider's response was not closely linked to PA concentration, however, and may also depend on hunger levels and previous experience with PA-containing butterflies. All control and other non-PA containing butterflies were consumed although rejection of some body parts of freshly-emergedDanaus affinis suggests that compounds other than PAs may be involved.  相似文献   

12.
Summary Oreina cacaliae andO. speciosissima (Coleoptera, Chrysomelidae) sequester in their elytral and pronotal defensive secretions pyrrolizidine alkaloids (PAs) as Noxides (PA N-oxides). The PA N-oxide patterns found in the beetles and their host plants were evaluated qualitatively and quantitatively by capillary gas chromatography/mass spectrometry (GC-MS). Of the three host plantsAdenostyles alliariae (Asteraceae) is the exclusive source for PA N-oxide sequestration in the defensive secretions of the beetles. With the exception of O-acetylseneciphylline the N-oxides of all PAs ofA. alliariae, i.e. senecionine, seneciphylline, spartioidine, integerrimine, platyphylline and neoplatyphylline were identified in the secretion. PA N-oxides typical ofSenecio fuchsii (Asteraceae) were detected in the bodies of the beetles but not in their secretion. No PAs were found in the leaves of the third host plant,Petasites paradoxus (Asteraceae). The results suggest the existence of two distinctive storage compartments for PA N-oxides in the beetle: (1) the defensive secretion, containing specifically PA N-oxides acquired fromA. alliariae; (2) the body of the beetle, sequestering additionally but less selectively PA N-oxides from other sources,e.g. S. fuchsii or monocrotaline N-oxide fed in the laboratory. The concentration of PA N-oxides in the defensive secretion is in the range of 0.1 to 0.3 mol/1, which is more than 2.5 orders of magnitude higher than that found in the body of the beetle. No significant differences exist in the ability of the two species of beetles to sequester PA N-oxides fromA. alliariae, althoughO. speciosissima, but notO. cacaliae, produces autogenous cardenolides. A negative correlation seems to exist between the concentrations of plant-derived PA N-oxides andde novo synthesized cardenolides in the defensive secretion ofO. speciosissima.  相似文献   

13.
Aristolochia macrophylla (Lam.) is a major host of the pipevine swallowtail butterfly,Battus philenor (L.), in the eastern United States. The female butterflies use a synergistic mixture of inositols, acids and a lipid as oviposition cues in recognizing this plant on contact. The acids and lipid, all isolated from the Et2O-CHCl3 fraction of an alcoholic extract of fresh foliage, were identified as aristolochic acid I (1), aristolochic acid II (2) and 1,2-[di(9Z,12Z,15Z)-octadeca-9, 12, 15-trienoyl]-3-galactosyl-sn-glycerol (3). Identifications were facilitated by UV, MS (EI and FAB) and NMR (1D and 2D) spectral techniques and by analysis of the hydrolysis products of 3. The active inositols were identified as D-(+)-pinitol, reported previously, and sequoyitol. Though this is apparently the first report of oviposition responses to a diacyl glycerol glycoside by a phytophagous insect, responses to aristolochic acids and sequoyitol have been reported previously for anAristolochia-feeding swallowtail of a different genus in Japan. This indicates substantial evolutionary conservatism in chemical oviposition cues within the tribe Troidini.  相似文献   

14.
Host-plant leaf surface compounds influencing oviposition in Delia antiqua   总被引:1,自引:0,他引:1  
Summary. Delia antiqua (Diptera: Anthomyiidae) females lay eggs between the leaves of onion plants or in the soil around the base of the plants, then the maggots feed on the onion bulb and roots causing rapid secondary infection by fungi and bacteria. It is well known that the first sensory modality used by the onion fly is vision, therefore the shape (vertical narrow cylinders) and colour (yellow) of the plant play a crucial role in the recognition of a potential host plant. In the past it has been shown that n-dipropyl disulfide (Pr2S2), a typical component of onion volatiles, is an important chemical host plant cue. We extracted host leaf surface to verify if Pr2S2 is the major chemical oviposition stimulant and to determine if other as yet unknown substances may play a role in host-plant selection. We confirmed that the females laid more eggs around onion plants with leaves than when only the onion bulb was present and that the odour of chopped onion stimulates oviposition. Extraction of the surface of onion leaves revealed that only the apolar fraction contained substances that stimulate egg-laying in D. antiqua. GC-EAD analysis indicated that a minor constituent, Pr2S2, is perceived by the olfactory receptor on the antennae of the onion fly females. This confirmed the importance of Pr2S2 as oviposition stimulant. Contact with the polar fraction did not stimulate egg-laying behaviour in this Delia species. We discuss the oviposition strategy of D. antiqua in comparison with its closely related species, D. radicum, in which the oviposition behaviour is stimulated mainly through contact with the cabbage leaf surface and only partially by the host volatiles.  相似文献   

15.
Summary. Surrogate leaves treated with methanolic leaf surface extracts of Brassica napus L. (cv Express) plants that received three different sulphur fertilisation treatments showed even more marked differences by the oviposition choice of Delia radicum L. than the potted plants. This confirms that the oviposition preference of D. radicum is mediated by chemical compounds on the leaf surface and that the quality of host-plants in terms of their nutrition status can be perceived by the female insect.The oviposition data were positively correlated with the content of fractionated surface extracts containing either CIF (cabbage identification factor; 1,2-dehydro-3-thia- 4,10,10b-triaza-cyclopenta[.a.]fluorine-1-carboxylic acid) or glucosinolates. Electrophysiological recordings from the tarsal chemoreceptor sensilla C5 and D3,4 showed that receptor neurons react to glucosinolate- and CIF-fractions. We found that the chemosensory activity of specific glucosinolate- and CIF-receptor neurons corresponded with the respective behavioural activity in the oviposition choice assays. The responses of D. radicum to glucosinolates in the electrophysiological recordings studies corresponded to the observed oviposition preference on plants or artificial leaves characterised with an higher amount of glucosinolates on leave surfaces. The presented data suggested that CIF and glucosinolates are involved in host-plant preference of D. radicum and are perceived by tarsal chemoreceptors.  相似文献   

16.
The effects of larval diet on the nutritional preferences of butterflies has rarely been examined. This study investigates whether alterations in the larval diet result in changes in adult preferences for nectar amino acids. Larvae of Coenonympha pamphilus were raised on fertilized or unfertilized Festuca rubra, grown under ambient (350 ppm) or elevated (750 ppm) atmospheric CO 2environments. Fertilization led to marked increases in leaf nitrogen concentration. In plants grown under elevated CO 2conditions, leaf water and nitrogen concentrations were significantly lower, and the C/N-ratio increased significantly. Fertilization of the host plant shortened the development time of C. pamphilus larvae, and pupal weight increased. In contrast, larvae of C. pamphilus developed significantly slower on F. rubra grown under elevated CO 2, but adult emergence weight was not affected by CO 2treatment of the plant. C. pamphilus females showed a clear preference for nectar mimics containing amino acids, whereas males, regardless of treatment, either preferred the nectar mimic void of amino acids or showed no preference for the different solutions. Female butterflies raised on fertilized plants showed a significant decline in their preference for nectar mimics containing amino acids. A slight, but not significant, trend towards increased nectar amino acid preference was found in females raised on plants grown under elevated CO 2. We clearly demonstrate that alterations in larval host quality led to changes in butterfly nectar preferences. The ability of the butterfly to either rely less on nectar uptake or compensate for poor larval conditions represents a trade-off between larval and adult butterfly feeding.  相似文献   

17.
Summary. The turnip sawfly Athalia rosae sequesters glucosinolates from its cruciferous host plants in the larval stage. Investigation of the chemosensory and behavioural responses of adult A. rosae to glucosinolates and their volatile hydrolysis products, isothiocyanates, revealed that females detect glucosinolates by contact chemoreception and isothiocyanates by antennal olfaction. In electroantennogram recordings, four isothiocyanates (allyl [2-propenyl] isothiocyanate, benzyl isothiocyanate, butyl isothiocyanate and iberverin [3-methylthiopropyl isothiocyanate]) were active at all doses presented, including the lowest (0.1 μg), whilst the threshold for detection of three others, iberin [3-methylsulphinylpropyl isothiocyanate], methyl isothiocyanate, and sulforaphane [4-methylsulphinylbutyl isothiocyanate], was higher, at between 1 and 10 μg (source concentration of volatiles). Allyl isothiocyanate attracted experienced females in a four-chambered olfactometer, whilst na?ve females showed no response. Allyl isothiocyanate also attracted mature females to baited yellow water traps in field trials, although immature females were repelled at high isothiocyanate concentrations. In laboratory behavioural bioassays the glucosinolates sinigrin (allyl [2-propenyl] glucosinolate) and sinalbin (p-hydroxybenzyl glucosinolate), stimulated ovipositor probing in mature female A. rosae to an extent comparable to hot-water extracts of their host plants. These responses show that glucosinolates and isothiocyanates play an important role in host finding and host recognition in A. rosae.  相似文献   

18.
Summary Chemical analysis of each individual leaf of fivePlantago lanceolata (Plantaginaceae) plants showed that iridoid glycoside content increased from undetectable in the oldest photosynthetic leaves to over 9% dry weight in the youngest leaves. The relative proportion of the two iridoid glycosides inP. lanceolata also changed with leaf age: older leaves had significantly more aucubin, whereas the youngest leaves had primarily or solely catalpol. Oviposition tests with femaleJunonia coenia (Nymphalidae) butterflies, showed that they laid most of their eggs on new leaves.  相似文献   

19.
The distribution of ecological resources and their significance for males and females may vary considerably. Intersexual behavioural interactions may lead, combined with particular resource configurations, to sexual spatial segregation. We investigated this issue relative to host plant use in females of the purple-edged copper butterfly, Lycaena hippothoe. Males exhibited nectar resource-based territoriality, which is an uncommon mate-locating system in butterflies. They perched and patrolled in large territories harassing every passing female. In our study system, the percentage of spatial dimension shared for adult and larval resources was estimated at 50%, and males monopolised 28% of the nectar-rich zones. Under these conditions of harassment, females travelled between nectar-rich zones for feeding and zones with suitable host plants for egg laying, but often without nectar and hence with low male density. This is likely to limit their time budget and, potentially, their realised fecundity as suggested by the low number of eggs found relative to population size. Females were also highly specialised in selecting host plants under particular environmental conditions. Using test choice in experimental cages, we showed that, in the absence of males, only micro-climatic conditions may significantly influencing egg-laying decisions. Moreover, results of egg-rearing experiments under different temperature treatments suggested that eggs were laid in thermally suitable micro-environments. The highly selective egg-laying behaviour can be viewed as a preference-performance choice. Knowledge of individuals' behaviour, including sexual interactions, can be highly significant for our understanding of habitat use, which in turn can be essential for conservation. We discuss this for L. hippothoe, a species of regional conservation concern.  相似文献   

20.
Summary. For butterflies to be efficient foragers, they need to be able to recognize rewarding flowers. Flower signals such as colours and scents assist this recognition process. For plant species to attract and keep butterflies as pollinators, species-specific floral signals are crucial. The aim of this study is to investigate foraging responses to floral scents in three temperate butterfly species, Inachis io L. (Nymphalidae), Aglais urticae L. (Nymphalidae), and Gonepteryx rhamni L. (Pieridae), in behavioural choice bioassays. The butterflies were allowed to choose bet-ween flower models varying in scent and colour (mauve or green). Flowers or vegetative parts from the plants Centaurea scabiosa L. (Asteraceae), Cirsium arvense (L.) (Asteraceae), Knautia arvensis (L.) (Dipsacaceae), Buddleja davidii Franchet (Loganicaeae), Origanum vulgareL. (Lamiaceae), Achillea millefolium L. (Asteraceae), and Philadelphus coronarius L. (Hydrangiaceae) were used as scent sources. All visits to the models — those that included probing and those that did not — were counted, as was the duration of these behaviours. Both flower-naive and flower-experienced (conditioned to sugar-water rewards, the colour mauve, and specific floral scents) butterflies were tested for their preference for floral versus vegetative scents, and to floral scent versus colour. The butterflies were also tested for their ability to switch floral scent preferences in response to rewards. Flower-naive butterflies demonstrated a preference for the floral scent of the butterfly-favourable plants C. arvense and K. arvensis over the floral scent of the non-favourable plants Achillea millefolium (Asteraceae), and Philadelphus coronarius cv. (Hydrangiaceae). Most of the butterflies that were conditioned to floral scents of either C. arvense, K. arvensis, or B. davidii readily switched theirfloral scent preferences to the one most recently associated with reward, thus demonstrating that floral scent constancy is a result from learning. These findings suggest that these butterflies use floral scent as an important cue signal to initially identify and subsequently recognize and distinguish among rewarding plants. Received 2 September 2001; accepted 9 September 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号