首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
B. Riegl 《Marine Biology》2002,140(1):29-40
Two positive sea-surface temperature anomalies occurred in the Arabian Gulf in short sequence. Between May and August 1996 and 1998, sea-surface temperatures in the southern Arabian Gulf were elevated by 2°C above average. The consequences for coral fauna, coral diseases and coral regeneration were studied in Dubai (United Arab Emirates) between Jebel Ali and Ras Hasyan. In 1996, coral death was widespread, affecting primarily the genus Acropora. In Acropora-dominated areas, live coral cover was reduced from 90% to about 26% in 1996, while in 1998 only a reduction from 26% to 22% of the remaining coral cover occurred. In the study area, all six Acropora species suffered total mortality in 1996, thus the coral fauna was reduced from 34 species to 27. The nearest areas with surviving Acropora were 30 km to the east (Deira) and 20 km to the west (Al Jazira). Massive coral species suffered negligible mortality, and slowly increased in space cover. The Acropora overkill turned 7.9 km2 (19.7% of total coral-covered area) of previously lush coral gardens into a dead framework that was increasingly bioeroded. Acropora recruitment only started in 1998, average recruit size in 1999 was 7Dž cm, and recruits were rare. Prior to the mass mortality event, coral diseases were common and seasonal (14LJ% of corals, mainly Acropora, affected in summer, in winter 7Lj%, mainly massives), after the mortality event seasonality was lost and infection remained below winter levels (6LJ%, only massives infected). In fish, overall species richness decreased from 95 to 64 species in point counts, but frequency only decreased in one species (Pseudochromis persicus). Guild structure changed inasmuch as herbivores and planktivores increased, and invertivores decreased, although differences were not statistically significant. The most abundant family, both prior to and after the coral mass mortality, was Lutjanidae. It appears that even though much of the coral was dead, the maintenance of structural complexity allowed the fish assemblage to avoid a similar catastrophic change to that experienced by the coral assemblage.  相似文献   

2.
Dynamics of a coral reef community at Tiao-Shi Reef, southern Taiwan were studied using permanent transects to examine coral recovery and successive cascades to collapse stage resulting from chronic anthropogenic impacts and typhoons. Three distinct zones were recognized within a relatively small study area (250 m across) formerly dominated by large stands of branching Acropora corals. The first zone still retains the dominance of branching Acropora corals, although they show a significant decreasing tendency. The second zone exhibits recovery with a significant increase in branching Montipora stellata, which is recruited and grows faster than branching Acropora corals. The third zone is occupied by anemone, Condylactis sp., and demonstrates a stable phase of coral deterioration without recovery. Such differences in coral reef community dynamics within a small spatial scale illustrate mosaic dynamics which have resulted from degradation of the water quality, patchy mortality of large branching Acropora thickets caused by typhoons, the rapid asexual fragmentation and growth of M. stellata making it a successful colonizer, and occupation by anemone, Condylactis sp., together with unstable remnants of dead Acropora rubbles have not allowed coral recruits to survive.  相似文献   

3.
Seven fringing reef complexes were chosen along the leeward coast (west) of Barbados to study the effects of eutrophication processes upon the scleractinian coral assemblages. The structure of scleractinian coral communities was studied along an eutrophication gradient with a quantitative sampling method (line transect) in terms of species composition, zonation and diversity patterns. On the basis of these data the fringing reefs were divided into three ecological zones: back reef, reef flat, and spur and groove. Statistically discernible and biologically significant differences in scleractinian coral community structure, benthic algal cover and Diadema antillarum Philippi densities were recorded among the seven fringing reefs. High correlations between environmental variables and biotic patterns indicate that the effects of eutrophication processes (nutrient enrichment, sedimentation, turbidity, toxicity and bacterial activity) were directly and/or indirectly affecting the community structure of scleractinian coral assemblages. In general, species diversity was most sensitive in delineating among-reef, and among-zone, differences, which were attributed to intensification of eutrophication processes. Porites astreoides Lamarck, P. porites (Pallas), Siderastrea radians (Pallas), and Agaricia agaricites (Linnaeus) were the most abundant coral species in the polluted southern reefs. The absence and/or low abundance of coral species previously characterized as well adapted to high turbidity and sedimentation [i.e. Montastrea cavernosa Linnaeus, Meandrina meandrites (Linnaeus)] indicate that eutrophication processes may adversely affect these species. It is suggested that sediment rejection abilities, combined with feeding and reproductive strategies, are the primary biological processes of scleractinian corals through which eutrophication processes directly and/or indirectly affect the structure of coral communities.  相似文献   

4.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

5.
Multispecies assemblages of the coral genus Acropora occur commonly throughout the Indo-Pacific Ocean. Nine species from such an assemblage comprising 41 species of Acropora, at Big Broadhurst Reef on the Great Barrier Reef, were studied during 1981–1983. Similarities and differences in reproductive modes and timing, oocyte dimensions and fecundity, recruitment by larvae and by fragments, and mortality were recorded. All species had an annual gametogenic cycle, were simultaneous hermaphrodites, and had the same arrangement of gonads in polyps. In six species, most colonies released gametes on the same night of the year, in early summer, during a mass spawning event involving many coral genera. A seventh species had colonies spawning at this as well as other times of the year. Another species spawned in late summer, and gametes were not observed to mature in the last species. Eggs were very large (601 to 728 m geometric mean diameter) and fecundity of polyps low, compared with other corals; no reduction in oocyte numbers occurred during oogenesis. Reef-flat species had slightly bigger and fewer eggs than reef-slope species. All species recruited by larvae, but four also multiplied by fragmentation, either year-round or during occasional rough weather. Yearround fragmenters had few larval recruits; non-fragmenters had many, and a rough-weather fragmenter had an intermediate number of larval recruits. It was concluded that larval recruitment largely determined species composition, and that reduced larval recruitment was responsible for sparse distribution of fragmenting species. Subsequent mortality in some species and increase by fragmentation in others probably determined relative abundances.  相似文献   

6.
P. J. Edmunds 《Marine Biology》1994,121(1):137-142
The hypothesis that intraspecific variation in coral bleaching is a result of the distribution of bleaching-susceptible clonal genotypes (genets) was addressed using photoquadrats recorded during the 1987 Caribbean bleaching event on a reef dominated by Montastraea annularis (Morphotype I), together with manipulative experiments with Porites porites. Nearest-neighbor analysis showed that bleached colonies (ramets) of M. annularis at 10 m depth had a high probability (0.80) of having a nearest bleached neighbor of the same genet rather than a bleached ramet of a different genet. Furthermore, the frequency distributions of bleached ramets of M. annularis in the photoquadrats was significantly different from a Poisson distribution, suggesting that bleached ramets were aggregated on the reef. Manipulative experiments with P. porites from 15 m depth showed that some genets were more susceptible to thermal bleaching than others, since three genets had significantly different rates of zooxanthellae loss when exposed to elevated temperatures in tanks receiving irradiances similar to those found in situ. These results suggest that the in situ patchy distribution of bleached ramets could correspond to the distribution of certain genets, and that adjacent genets can exhibit sufficiently different phenotypes to account for intraspecific variation in bleaching. Further studies of genet-specific coral bleaching may provide valuable insights into the causes and consequences of bleaching.  相似文献   

7.
Major bleaching events can lead to increased thermal tolerance in corals   总被引:3,自引:1,他引:2  
Climate change is a major threat to coral reef ecosystems worldwide. A key determinant of the fate of reef corals in a warming climate is their capacity to tolerate increasing thermal stress. Here, an increase in thermal tolerance is demonstrated for three major coral genera (Acropora, Pocillopora and Porites) following the extensive mass bleaching event that occurred on the Great Barrier Reef (Australia) in 1998. During the subsequent and more severe thermal stress event in 2002, bleaching severity was 30–100% lower than predicted from the relationship between severity and thermal stress in 1998, despite higher solar irradiances during the 2002 thermal event. Coral genera most susceptible to thermal stress (Pocillopora and Acropora) showed the greatest increase in tolerance. Although bleaching was severe in 1998, whole-colony mortality was low at most study sites. Therefore, observed increases in thermal tolerance cannot be explained by selective mortality alone, suggesting a capacity for acclimatization or adaptation. Although the vulnerability of coral reefs remains largely dependent on the rate and extent of climate change, such increase in thermal tolerance may delay the onset of mass coral mortalities in time for the implementation of low-emission scenarios and effective management.  相似文献   

8.
Coral bleaching events are often associated with higher levels of coral mortality but when this occurs in the chronology of individual bleaching events is poorly documented. Knowing when mortality occurs is important for understanding molecular mechanisms and the putative adaptive significance of the response (the Adaptive Bleaching Hypothesis). In a detailed study of a coral bleaching event on the Great Barrier Reef, involving weekly and twice weekly repetitive observations of >200 individually marked corals over an 18 month period (∼16,000 observations), it is shown that bleaching in Acropora latistella, A. subulata and Turbinaria mesenterina was an acute, rapid response, occurring within days of a peak in seawater temperatures exceeding previously described thresholds. Subsurface light levels, measured over the duration of the event, were not anomalous. Full bleaching (i.e. whole colonies turning bone-white) and partial bleaching (white patches) was observed in the Acropora spp. whilst the T. mesenterina colonies typically paled to a light brown colour. Algal densities in bleached corals were 10–30% of those of normally pigmented corals (∼2.5 × 106 algae per cm2), and in this instance bleaching was clearly a sudden, isolated, stress event and not an extreme low-point in the seasonal fluctuation of the density of symbiotic algae. Bleached corals were associated with high levels of partial and whole-colony mortality, but mortality was exclusively limited to the two Acropora spp. Importantly, most of this mortality was recorded in surveys conducted 1 and 2 weeks after bleaching was first observed, and for A. latistella as little as 1 week after bleaching was first observed. This suggests that in this particular bleaching event, for the Acropora species, that bleaching and mortality were intimately linked: this in turn suggests it was a pathological phenomenon. The study highlights a problem in the adaptive bleaching hypothesis, whereby significant levels of mortality can occur in a bleaching event before any chance for subsequent recombination of the host-symbiont unit. It is argued that in order to further evaluate the significance of bleaching as a potentially adaptive mechanism, bleaching-induced and bleaching-related mortality have to be fully considered. It is necessary to incorporate the cost (in terms of mortality) of a bleaching event, the recurring cost of reverting to the original, mortal, stress–prone combination after the event, and the higher cost associated with forming a maladaptive combination.  相似文献   

9.
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but the adults can enter a size-refuge in which they cannot be competitively displaced. An aggressive group (Acropora species) dominates at equilibrium, which is not reached due to mass mortality events that primarily disadvantage this group (compensatory mortality, >90% versus 25% in faviids and Porites) roughly every 15 years. Population parameters (N individuals, carrying capacity) were calculated from satellite imagery and in situ transects, vital rates (fecundity, mortality, and survival) were derived from the model, field observations, and literature. It is shown that populations and unaltered community structure can persist despite repeated 90% mortality, given sufficiently high fecundity of the remaining population or import from connected populations. The frequency of disturbance determines the dominant group—in low frequency Acropora, in high frequency Porites. This is congruent with field observations. The model of an isolated population was more sensitive to parameter changes than that of connected populations. Highest sensitivity was to mortality rate and recruitment rate. Community composition was sensitive to spacing of disturbances and level of catastrophic mortality. Decreased mortality led to Acropora dominance, increased mortality led to Acropora extinction. In nature, closely spaced disturbances have severely disadvantaged Acropora populations over the last decade. Unless a longer (>10 years) disturbance-free interval can be maintained, a permanent shift away from Acropora dominance will be observed. A mortality rate of 99% in Acropora, as observed in 1996, is not sustainable if repetitive and neither is a disturbance frequency <15 years—each leading to population collapse. This shows that the severity and/or the spacing of the 1996–1998–2002 disturbances were unusual in frequency and duration.  相似文献   

10.
Microhabitat associations are considered to be important for juvenile survivorship and growth of coral reef fishes. The aim of the study was to quantify microhabitat associations between juvenile and adult white-streaked grouper Epinephelus ongus, which supports important fisheries in coral reef areas. Underwater observations revealed that most juveniles were found in bottlebrush Acropora spp., staghorn Acropora spp. and coral rubble and there was a significant positive use of bottlebrush Acropora spp. and a significant negative use of coral rubble. For adults, most individuals were found in bottlebrush Acropora spp. and staghorn Acropora spp., and there was a significant positive use of staghorn Acropora spp. and significant negative use of coral rubble. A habitat choice experiment by using pre-settlement individuals revealed that both bottlebrush Acropora spp. and staghorn Acropora spp. were used as settlement sites, whereas coral rubble was rarely used as a settlement site. Results of the study suggest that juvenile and adult E. ongus showed significantly positive microhabitat associations with bottlebrush Acropora spp. and staghorn Acropora spp., respectively, in the field. Bottlebrush Acropora spp. has smaller inter-branch spaces than staghorn Acropora spp., which could drive patterns of microhabitat associations. In addition, post-settlement processes such as predation may influence the spatial distribution of juveniles. Because Acropora corals are very susceptible to coral bleaching, we predict that rising temperatures from climate change will negatively impact populations of E. ongus.  相似文献   

11.
The 1998 bleaching event and its aftermath on a coral reef in Belize   总被引:5,自引:0,他引:5  
Widespread thermal anomalies in 1997-1998, due primarily to regional effects of the El Niño-Southern Oscillation and possibly augmented by global warming, caused severe coral bleaching worldwide. Corals in all habitats along the Belizean barrier reef bleached as a result of elevated sea temperatures in the summer and fall of 1998, and in fore-reef habitats of the outer barrier reef and offshore platforms they showed signs of recovery in 1999. In contrast, coral populations on reefs in the central shelf lagoon died off catastrophically. Based on an analysis of reef cores, this was the first bleaching-induced mass coral mortality in the central lagoon in at least the last 3,000 years. Satellite data for the Channel Cay reef complex, the most intensively studied of the lagoonal reefs, revealed a prolonged period of elevated sea-surface temperatures (SSTs) in the late summer and early fall of 1998. From 18 September to 1 October 1998, anomalies around this reef averaged +2.2°C, peaking at 4.0°C above the local HotSpot threshold. In situ temperature records from a nearby site corroborated the observation that the late summer and early fall of 1998 were extraordinarily warm compared to other years. The lettuce coral, Agaricia tenuifolia, which was the dominant occupant of space on reef slopes in the central lagoon, was nearly eradicated at Channel Cay between October 1998 and January 1999. Although the loss of Ag. tenuifolia opened extensive areas of carbonate substrate for colonization, coral cover remained extremely low and coral recruitment was depressed through March 2001. High densities of the sea urchin Echinometra viridis kept the cover of fleshy and filamentous macroalgae to low levels, but the cover of an encrusting sponge, Chondrilla cf. nucula, increased. Further increases in sponge cover will impede the recovery of Ag. tenuifolia and other coral species by decreasing the availability of substrate for recruitment and growth. If coral populations are depressed on a long-term basis, the vertical accretion of skeletal carbonates at Channel Cay will slow or cease over the coming decades, a time during which global-warming scenarios predict accelerated sea-level rise.  相似文献   

12.
Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life‐form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained. Efecto de la Expansión de Macroalgas y Áreas Marinas Protegidas sobre la Recuperación de Coral Después de una Perturbación Climática  相似文献   

13.
For over 20 years the El Niño-Southern Oscillation (ENSO) has caused damage to the coral reefs of the eastern Pacific and other regions. In the mid-1980s scientists estimated that coral cover was reduced by 50–100% in several countries across the region. Almost 20 years (2002) after the 1982–1983 event, we assessed the recovery of the virtually destroyed reefs at Cocos Island (Costa Rica), previously evaluated in 1987 and reported to have less than 4% live coral cover. We observed up to fivefold increase in live coral cover which varied among reefs surveyed in 1987 and 2002. Most new recruits and adults belonged to the main reef building species from pre-1982 ENSO, Porites lobata, suggesting that a disturbance as outstanding as El Niño was not sufficient to change the role or composition of the dominant species, contrary to phase shifts reported for the Caribbean. During the 1990s, new species were observed growing on the reefs. Notably, Leptoseris scabra, considered to be rare in the entire Pacific, was commonly found in the area. Recovery may have begun with the sexual and asexual recruits of the few surviving colonies of P. lobata and Pavona spp. and with long distance transport of larvae from remote reefs. We found an overall 23% live coral cover by 2002 and with one reef above 58% indicating that Cocos Island coral reefs are recovering.  相似文献   

14.
Coral reefs are under threat due to climate-mediated coral mortality, which affects some reef coral genera more severely than others. The impact this has on coral reef fish is receiving increasing attention, with one focal area assessing impacts on fish that feed directly on live coral. It appears that the more specialised a species of corallivore, the more susceptible it is to coral declines. However data are sparse for the Indian Ocean, and little is known about why some corals are preferentially fed upon over others. Here I assess feeding specialisation in three species of coral feeding butterflyfish in the Chagos Archipelago, central Indian Ocean, assess the food quality of the coral genera they target and document patterns of decline in the Seychelles following a severe coral mortality event. Cheatodon trifascialis was the most specialised coral feeder, preferentially selecting for Acropora corals, however, when Acropora was scarce, individuals showed considerable feeding plasticity, particularly for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on Acropora corals, but fed on a much more diverse suite of corals and also displayed some selectivity for Porites. C. auriga is a facultative corallivore and consumed ∼55% live coral, which lies within the wide range of coral dependence reported for this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest food quality, with Pocillopora having the lowest, which conforms with diet selection of corallivores and helps explain preferential feeding. Obligate specialist feeders displayed the greatest declines through coral mortality in the Seychelles with obligate generalists also declining substantially, but facultative feeders showing little change. Clearly a greater understanding of the species most vulnerable to disturbance, their habitat requirements and the functional roles they play will greatly assist biodiversity conservation in a changing climate.  相似文献   

15.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

16.
Colony size is an important life-history characteristic of corals and changes in colony size will have significant effects on coral populations. This study summarizes ∼21,000 haphazard colony size measurements of 26 common coral taxa (mostly coral genera) collected annually between 1992 and 2006 in seven Kenyan reef lagoons. There was a major coral bleaching and mortality event in early 1998 and all seven reefs were affected. The seven locations include two long-protected Marine National Parks (Malindi and Watamu), one relatively recently established park (Mombasa), and four unprotected locations (Vipingo, Kanamai, Ras Iwatine, and Diani). They span about 150 km and represent three distinct fishery management regimes: old protected (OP), newly protected (NP), and unprotected (UP). Seventeen taxa had statistically significant different sizes for comparisons of the management regimes, with only one genus, Pavona, having larger sizes in the unprotected reefs. The size of eight coral genera showed a significant time and management interaction, and size frequency differences that existed in management areas prior to 1998 were further increased after the bleaching event. Time alone was a significant factor for eleven genera, and in all cases colonies were smaller after 1998. For most taxa, colony size distributions were significantly skewed and had right-tailed distributions. After 1998, the right-tailed distributions of Acropora, Hydnophora, and Montipora were significantly reduced. Most taxa had peaky distributions and only Acropora experienced a statistically significant change from peaky to flat. The mean sizes of taxa were not related to their mortality across 1998, which indicates that the size effect was within rather than between taxa. Astreopora and Platygyra were well-sampled taxa that did not show an effect of management, but had reduced median sizes across 1998. Consequently, no taxa were tolerant of both fishing and bleaching disturbances and the combined effect was to reduce the size of all corals.  相似文献   

17.
Our understanding of the reproductive biology of corals from the Mexican southeastern Pacific is limited, and consequently, the role of reproduction in structuring coral communities is unclear. As a first attempt to understand the importance of sexual reproduction in structuring and maintaining of the coral communities from this region, we documented the reproductive cycles over 2 years (2003–2004) in three main reef-building corals species in the region. Pocillopora damicornis was shown to be hermaphroditic with asynchronous gamete development observed only in 2004; P. gigantea was characterized as both gonochoric and cosexually hermaphroditic. Absence of mature gametes was documented in both species, and an observation may be attributed to the 2003 El Niño Southern Oscillation event, which may have inhibited reproductive maturation via thermal stress. Porites panamensis was gonochoric with asynchronous development, and planulae were generally brooded. The presence of mature gametes and planulae in P. panamensis polyps suggests that this species is an important contributor to local and, likely, regional recruitment of this species. Further research should seek to identify important source populations for these coral recruits and document the exchange of larvae between coral populations of the Mexican Pacific.  相似文献   

18.
This study documents the effects of two consecutive disturbances on coral community structures in the Gulf of Oman (United Arab Emirates); Cyclone Gonu in June 2007 and the Cochlodinium polykrikoides harmful algal bloom (HAB) that persisted from August 2008 until May 2009. Coral cover, colony densities, size class frequency distributions, and geometric growth rates derived from size class transition probability matrices were used to assess the post-Gonu and post-HAB recovery trajectories at four sites. The net effects of these disturbances were fourfold: (i) storm damage caused >50% losses of live branching and tabular coral cover by fragmentation and dislodgment of pocilloporid and acroporid colonies; (ii) Pocillopora damicornis colonies that survived the cyclone experienced mass mortality during the first 3?months of the HAB, resulting in localized extirpation of this species; (iii) variable Acropora mortality during the HAB indicated individual colony, rather than taxa-wide, susceptibility; and (iv) massive colony coral taxa were resistant to both disturbances.  相似文献   

19.
Coral communities were examined from highly turbid near-shore marginal reefs of Abrolhos (Brazil) to test a paradigm previously developed from observations in clear water reefs; specifically, that coral photobiological properties follow a highly conserved linear relationship with optical depth (ζ) via preferential ‘non-photochemical’ over ‘photochemical’ dissipation of absorbed light energy. PAM flourometry in situ was used to examine the photobiology of the most dominant coral species throughout the platform surfaces and bases of Abrolhos’ characteristic ‘chapeir?es’ reef framework; however, none of the species consistently adhered to the ‘clear water paradigm’. PAM measurements further demonstrated that species conformed to two different strategies of non-photochemical energy dissipation: transient but relatively rapid for the two closely related endemic species (Mussismilia braziliensis and Mussismilia harttii) as opposed to more persistent for Montastrea cavernosa, Porites astreoides and Siderastrea stellata. Further experiments demonstrated that tolerance to anomalous stress amongst species did not correspond with the non-photochemical energy dissipation strategy present but was consistent with the relative dominance of species within the chapeir?es coral communities.  相似文献   

20.
Light profiles beneath the tabular coral species Acropora cytherea and A. hyacinthus were examined at Rib and Broadhurst Reefs, central Great Barrier Reef, in November 1980. They show a strongly decreasing illumination gradient towards the central stem. Beneath tables at 10m deep, which receive about 7.0 mW cm–2 at solar noon, substrate irradiance falls to a minimum of about 5% ambient or to about 0.4 mW cm–2. Thus, from previously reported compensation values, most sub-table substrate may receive above-compensation irradiance. Illumination beneath tables screened by foil is significantly lower. The coral communities beneath tables of these two species plus those of A. subulata and A. clathrata support an average 26 colonies m–2, at a cover of 40%, nearly identical to adjacent, unshaded quadrats. Species richness is likewise very similar. Species richness and colony density beneath the tables increase inwards from the perimeter of the shaded areas, decreasing only near the central stems. Dark adaptation and reduced competitive and grazing pressure are suggested explanations for the latter. It is concluded that shading does not provide a significant competitive advantage for Acropora spp. tables at 10 m deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号