首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Corals in an in situ respirometer exposed to suspended peat during the day greatly decreased net oxygen production, probably due to a reduction of intensity and spectral quality of light reaching the symbiotic zooxanthellae. Net production returned to pre-exposure levels after the chambers were cleared; the corals showed no behavioral effects. In contrast, after exposure during the night, corals displayed clearing behavior (such as extreme distension of the coenosarc and trapping of peat particles in thick clumps of mucus) and an increase in respiration rate comparable to the decrease in net production observed during the daytime exposure. The following morning, net production values were significantly lower than pre-exposure production values although ambient light intensity was slightly higher. This decrease in production as well as a 22% reduction of chlorophyll content in the coral tissue indicated loss of zooxanthellae from the stressed corals. Long-term exposure to such a stress could reduce coral growth rates and substantially alter coral reef communities.  相似文献   

2.
Ultraviolet radiation (UVR) has been implicated in coral-bleaching processes and UVR may create stress to marine organisms by damage to DNA. Absorption of energy from UVB (280 to 320 nm) induces direct damage to DNA via cyclobutane pyrimidine dimer photoproduct-formation. We examined the extent of DNA damage created by UVR in coral reef microbial communities and whether the coral-surface microlayer (CSM) provides protection from UVR to the microorganisms found there. Diel patterns and depth profiles of UVR effects were examined in coral mucus (coral-surface microlayer, CSM) from Montastraea faveolata and Colpophyllia natans, and water-column samples of similar depths. UV-induced photodamage was determined using a radioimmunoassay specific for cyclobutane pyrimidine dimers (thymine dimers). Significant photodamage was detected in water-column and CSM samples, although the level of damage in CSM samples was consistently lower than in water-column samples collected from the same depth, suggesting the presence of photoprotective mechanisms within the CSM. Diel patterns of photodamage were detected in both water-column and CSM samples, but peak damage occurred earlier in the day for the CSM samples, suggesting differences in damage and repair kinetics between the water column and CSM. The results suggest that microorganisms within the CSM are afforded some protection from UVR stress and that changes in the amount of DNA damage in these organisms may be an indicator of changing UVR stress to corals. Received: 10 January 1997 / Accepted: 15 September 1997  相似文献   

3.
Y. Loya 《Marine Biology》1975,29(2):177-185
The community structure and species diversity of hermatypic corals was studied during 1969–1973, in two reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the nature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further south, which is free from oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In September, 1970, both reefs suffered approximately 90% mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was “blooming” with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. It is suggested that phosphate eutrophication and chronic oil pollution are the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and/or development of coral larvae. It is possible that chronic oil, pollution results in either one or a combination of the following: (1) damage to the reproductive system of corals; (2) decreased viability of coral larvae; (3) changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.  相似文献   

4.
Polyps of the corallimorpharian Rhodactis rhodostoma (Ehrenberg, 1934) form aggregations that monopolise patches of space on the shallow reef flats of some Red Sea coral reefs. Some of these polyps bear specialised bulbous marginal tentacles (BMTs) where they contact cnidarian competitors. BMTs differ from the normally filiform marginal tentacles (FMTs) of R. rhodostoma, and appear to develop from them. However, their morphogenesis and long-term impacts on spatial competition with reef corals are unknown. We experimentally induced contacts between R. rhodostoma polyps and colonies of the branching stony coral Acropora eurystoma on a shallow coral reef at Eilat, northern Red Sea. During the first 24 d of contact, the A. eurystoma colonies extruded mesenterial filaments that damaged the tissues of the corallimorpharian polyps. After 18 d,>90% of R. rhodostoma individuals had developed BMTs, which resulted in a reversal in the direction of competitive damage. During the subsequent 1.5 years of observation, the corallimorpharians maintained well-developed BMTs, unilaterally damaged the tissues of A. eurystoma, and in some cases moved onto the stony coral skeletons and partially overgrew them. BMTs developed from FMTs in a series of four distinct stages, accompanied by significant changes in their morphology, cnidom, and density of nematocysts. Isolated control polyps did not develop BMTs or show any signs of damage. In contrast, corallimorpharian polyps transplanted into contact with colonies of the massive stony coral Platygyra daedalea began to develop sporadic BMTs, but were unilaterally and severely damaged by the corals, and started to disappear within 21 d, after the corals developed sweeper tentacles. We conclude that long-term outcomes of competition between R. rhodostoma and reef-building corals depend largely on the relative aggressive reach of the competitive mechanisms developed by each species. As a consequence, this corallimorpharian is an intermediate competitor in the aggressive hierarchy among Indo-Pacific reef corals. This study confirms that R. rhodostoma polyps may actively damage and overgrow some stony corals, leading to the formation of an almost continuous blanket of polyps in large patches of some shallow reef flats. Received: 15 July 1998 / Accepted: 24 March 1999  相似文献   

5.
Previous attempts to extract high molecular weight DNA from hermatypic corals have failed because the starting material was mature tissue. The following paper describes the isolation of DNA from coral sperm which is of high molecular weight, and is suitable for DNA hybridization, digestion with restriction endonucleases and cloning. Gross DNA hybridization and hybridization with cloned repetitive DNA was used to investigate relatedness amongst members of the scleractinian coral family Acroporidae. Acropora formosa and A. pulchra were found to share a common (highly homologous) DNA sequence repeat; a related but less homologous sequence was present in A. latistella, and no homologous sequence was detected in Montipora digitata. These results imply a close taxonomic relationship between A. formosa and A. pulchra, and suggest that molecular criteria of this sort will be extremely useful in coral taxonomy.  相似文献   

6.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

7.
Although coral dwelling fishes are common on coral reefs, the nature of their effect on the host corals is poorly understood. The present study, conducted in the Gulf of Eilat (Red Sea) between July 1989 and August 1990, demonstrated that the branching coral Stylophora pistillata (Esper) benefits, in two components of coral fitness, from the presence of the damselfish Dascyllus marginatus (Rüppell), an obligate coral dweller. The growth rate of damselfish-inhabited corals was significantly higher than that of corals without damselfish. This was observed, using two growth assessment methods, in long-term (>7 mo) comparisons between: (1) corals where the damselfish were experimentally removed versus corals with unaltered fish groups; and (2) naturally inhabited versus non-inhabited corals. The presence of damselfish did not affect the coral's specific (per surface area) reproductive output, whether it was assessed by the number of female gonads per polyp or by the number of planulae released cm-2 surface area d-1. However, the more rapid increase in branch size in damselfish-inhabited corals resulted in an apparent increase in the total reproductive output, with age, in growing corals. These findings demonstrate that the association between the damselfish D. marginatus and its host coral, S. pistillata, is mutualistic.  相似文献   

8.
化学污染物是影响珊瑚礁生态系统健康的重要因素之一。近年来,中国沿海地区农业活动、城市工业化以及旅游业发展迅速,珊瑚礁区的环境污染问题日趋严重。珊瑚礁生态系统长期处于化学污染物的联合毒性作用下,生态风险日益增加,已受到国内外研究者的广泛关注。本文综述了该领域的重要研究进展,并从个体、细胞和分子水平重点介绍了化学污染物对珊瑚的影响,主要包括:(1)珊瑚礁对重金属和多环芳烃有明显的富集作用,可以作为该海域化学污染物污染水平的外在反映;(2)化学污染物对珊瑚幼体的影响程度比成体大;(3)抗氧化酶和特定的功能基因可被用作生物标记物(biomarker)来监测珊瑚礁生态系统的健康状况。最后,本文对我国珊瑚礁生态系统未来的研究方向进行了展望,建议在典型的珊瑚礁海域进行长期的生态学监测,并结合室内毒理学实验,筛选出敏感的生物标志物,评价珊瑚礁生态系统可能存在的生态风险,为今后珊瑚礁生态系统的保护和管理提供科学依据。  相似文献   

9.
Mechanical stress on the coral Pocillopora damicornis caused the release of material that killed the coral pathogen Vibrio coralliilyticus. The bactericidal material was released into the surrounding seawater rapidly, reaching a maximum killing activity within 1 min of the stress. The coral antibacterial activity, referred to as CAA, was retained following filter sterilization and storage at –20°C. Exposure of V. coralliilyticus to CAA for 30 s, 1 min and 6 min resulted in the death of 82%, 89% and 99% of the bacteria, respectively. Release of CAA following mechanical stress was also observed with four other coral species tested. P. damicornis CAA was bactericidal to a wide variety of Gram-negative and Gram-positive bacteria. This is the first report that hard corals rapidly release fast-acting bactericidal material following mechanical stress. The release of CAA was demonstrated with both aquarium corals and corals taken directly from the sea. It is suggested that CAA is part of hard corals host defense system against infection, the natural stimulation for release of CAAs being the bite of a predator. Previous failures to detect antibacterial activity in hard corals can be attributed to a lack of understanding of the sensitive mechanism by which they are released.Communicated by M. Kühl, Helsingør  相似文献   

10.
G. Hodgson 《Marine Biology》1990,104(3):493-496
Sediment deposition on coral reefs occurs naturally and is also caused by man-made disturbances such as dredging; it can result in the death of scleractinian corals by an unknown mechanism. Sedimentation experiments with corals were carried out in El Nido, Northern Palawan, Philippines, in 1986, and in Honolulu, Oahu, Hawaii in 1988. Four species of Indo-Pacific reef corals (Oxypora glabra, Montipora verrucosa, Porites lobata, Pocillopora meandrina) were subjected to sedimentation tests with and without the antibiotic tetracycline to investigate the possible role of microorganisms in the process of sedimentation damage to corals.O. glabra, Porites lobata andPocillopora meandrina were rapidly damaged andO. glabra was always killed by sedimentation.Montipora verrucosa was not injured and may be physiologically resistant to sedimentation damage. Tetracyclinetreated seawater reduced the rate of tissue necrosis and prevented colony mortality, suggesting that tetracycline-sensitive bacteria are involved in the process of tissue necrosis and may be partially responsible for coral mortality following sediment deposition.  相似文献   

11.
Coral reefs are under threat due to climate-mediated coral mortality, which affects some reef coral genera more severely than others. The impact this has on coral reef fish is receiving increasing attention, with one focal area assessing impacts on fish that feed directly on live coral. It appears that the more specialised a species of corallivore, the more susceptible it is to coral declines. However data are sparse for the Indian Ocean, and little is known about why some corals are preferentially fed upon over others. Here I assess feeding specialisation in three species of coral feeding butterflyfish in the Chagos Archipelago, central Indian Ocean, assess the food quality of the coral genera they target and document patterns of decline in the Seychelles following a severe coral mortality event. Cheatodon trifascialis was the most specialised coral feeder, preferentially selecting for Acropora corals, however, when Acropora was scarce, individuals showed considerable feeding plasticity, particularly for the dominant Pocillopora corals. C. trifasciatus also preferentially fed on Acropora corals, but fed on a much more diverse suite of corals and also displayed some selectivity for Porites. C. auriga is a facultative corallivore and consumed ∼55% live coral, which lies within the wide range of coral dependence reported for this species. C:N ratio analysis indicated Lobophyllia and Acropora have the highest food quality, with Pocillopora having the lowest, which conforms with diet selection of corallivores and helps explain preferential feeding. Obligate specialist feeders displayed the greatest declines through coral mortality in the Seychelles with obligate generalists also declining substantially, but facultative feeders showing little change. Clearly a greater understanding of the species most vulnerable to disturbance, their habitat requirements and the functional roles they play will greatly assist biodiversity conservation in a changing climate.  相似文献   

12.
Coral bleaching events are associated with abnormal increases in temperature, such as those produced during El Niño. Recently, a breakdown in the coral–dinoflagellate (genus Symbiodinium) endosymbiosis has been documented in corals exposed to anomalously cold-water temperatures associated with La Niña events. Given the ecological significance of such events, as well as the threat of global climate change, surprisingly little is known about the physiological response of corals to cold stress. This study evaluated some physiological effects of continuous temperature decline in colonies of the eastern Pacific reef-building coral Pocillopora verrucosa. Twenty days of incubation at 18.5–19.0 °C resulted in a substantial decrease in holobiont lipid and Chla content, as well as an increase in Symbiodinium density. These observations suggest a combination of symbiont acclimation due to the temperature decline and reallocation of carbon toward algal growth as opposed to translocation to the host coral. With a decreased availability of symbiont-derived carbon, the coral likely catabolized storage lipids in order to survive the stress event. Despite this stress and some tissue necrosis, no mortality was noted and corals recovered quickly when returned to the ambient temperature. As these results are in marked contrast to similar studies investigating elevated temperature on this coral from this same location, Pocillopora in the Mexican Central Pacific may be more prone to long-term damage and mortality during periods of ocean warming as opposed to ocean cooling.  相似文献   

13.
Antimicrobial activity of Red Sea corals   总被引:1,自引:0,他引:1  
Scleractinian corals and alcyonacean soft corals are the two most dominant groups of benthic marine organisms inhabiting the coral reefs of the Gulf of Eilat, northern Red Sea. Antimicrobial assays performed with extracts of six dominant Red Sea stony corals and six dominant soft corals against marine bacteria isolated from the seawater surrounding the corals revealed considerable variability in antimicrobial activity. The results demonstrated that, while the majority (83%) of Red Sea alcyonacean soft corals exhibited appreciable antimicrobial activity against marine bacteria isolated from the seawater surrounding the corals, the stony corals had little or no antimicrobial activity. From the active soft coral species examined, Xenia macrospiculata exhibited the highest and most potent antimicrobial activity. Bioassay-directed fractionation indicated that the antimicrobial activity was due to the presence of a range of compounds of different polarities. One of these antibiotic compounds was isolated and identified as desoxyhavannahine, with a minimum inhibitory concentration (MIC) of 48 μg ml−1 against a marine bacterium. The results of the current study suggest that soft and hard corals have developed different means to combat potential microbial infections. Alcyonacean soft corals use chemical defense through the production of antibiotic compounds to combat microbial attack, whereas stony corals seem to rely on other means.  相似文献   

14.
Dynamics of a coral reef community at Tiao-Shi Reef, southern Taiwan were studied using permanent transects to examine coral recovery and successive cascades to collapse stage resulting from chronic anthropogenic impacts and typhoons. Three distinct zones were recognized within a relatively small study area (250 m across) formerly dominated by large stands of branching Acropora corals. The first zone still retains the dominance of branching Acropora corals, although they show a significant decreasing tendency. The second zone exhibits recovery with a significant increase in branching Montipora stellata, which is recruited and grows faster than branching Acropora corals. The third zone is occupied by anemone, Condylactis sp., and demonstrates a stable phase of coral deterioration without recovery. Such differences in coral reef community dynamics within a small spatial scale illustrate mosaic dynamics which have resulted from degradation of the water quality, patchy mortality of large branching Acropora thickets caused by typhoons, the rapid asexual fragmentation and growth of M. stellata making it a successful colonizer, and occupation by anemone, Condylactis sp., together with unstable remnants of dead Acropora rubbles have not allowed coral recruits to survive.  相似文献   

15.
Epizoic worms were found to occur on certain coral colonies from reefs off the coast of Eilat (Red Sea). We identified 14 coral species infested by acoelomorph worms at a depth range of 2–50 m. The host corals were all zooxanthellate and included both massive and branching stony corals and a soft coral. Worms from all hosts were identified as belonging to the genus Waminoa and contained two distinct algal symbionts differing in size. The smaller one was identified as Symbiodinium sp. and the larger one is presumed to belong to the genus Amphidinium. Worm-infested colonies of the soft coral, Stereonephthya cundabiluensis, lacked a mucus layer and exhibited distinct cell microvilli, a phenotype not present in colonies lacking Waminoa sp. In most cases, both cnidarian and Acoelomorph hosts displayed high specificity for genetically distinctive Symbiodinium spp. These observations show that the epizoic worms do not acquire their symbionts from the “host” coral.  相似文献   

16.
J. Stimson 《Marine Biology》1990,106(2):211-218
A mutualism exists between the xanthid crabs of the genusTrapezia and their host corals,Pocillopora damicornis. It has previously been established that these obligate coral residents benefit the coral hosts by defending them against echinoderm predators and by increasing the survival of polyps located deep between the coral branches. In turn, the corals apparently benefit the crabs by producing lipid-filled structures on which the trapezid crabs feed; these fat bodies may contain some of the lipid which in previous studies of coral metabolism has been termed excess. It was determined by experiments conducted at the Hawaii Institute of Marine Biology that the presence of crabs in colonies ofP. damicornis stimulates the polyps to produce the lipid-filled fat bodies; removal of crabs causes corals to cease producing fat bodies. A structure very similar to the fat bodies ofP. damicornis has been reported inAcropora durvillei. Both of these coral genera ordinarily possess xanthid-crab mutualists. This association between branching corals and crustaceans may have evolved because corals of these genera provide shelter among their branches and because these shallow-water corals are evidently capable of releasing lipid which is excess to the corals' metabolic needs, but which can be utilized by the crabs.  相似文献   

17.
The number and maximum body size of the gobioid fish, Paragobiodon echinocephalus, increase with the size of its obligate host coral, Stylophora. Only the largest two individuals breed monogamously in each coral head, and the reproductive success of each spawning is positively correlated with body size. In this study, the plasticity in size and age at maturity in P. echinocephalus was examined. We analyzed life history data from gobies 15–20 mm TL (total length) at their initial marking. Gobies found in larger corals were of lower rank in size order and began to breed later at a larger size, usually upon moving to other corals. The size at maturity ranged widely from 17.2 to 36.0 mm TL. After maturation, growth rates decreased. Mortality, however, was not affected by the timing of maturation. The host coral size did not affect the growth and mortality of marked fish, but the mortality rate of juveniles prior to marking appeared to be higher in smaller corals. The estimated lifetime reproductive success did not differ between the gobies inhabiting corals of different size. Thus the plasticity in size and age at maturity in this species may be maintained by frequency-dependent selection in choosing a host coral size that affects an individual’s social status. Received: 5 April 1995/Accepted after revision: 18 February 1996  相似文献   

18.
Many corals obtain their obligate intracellular dinoflagellate symbionts from the environment as larvae or juveniles. The process of symbiont acquisition remains largely unexplored, especially under stress. This study addressed both the ability of Fungia scutaria (Lamarck 1801) larvae to establish symbiosis with Symbiodinium sp. C1f while exposed to elevated temperature and the survivorship of aposymbiotic and newly symbiotic larvae under these conditions. Larvae were exposed to 27, 29, or 31°C for 1 h prior to infection, throughout a 3-h infection period, and up to 72 h following infection. Exposure to elevated temperatures impaired the ability of coral larvae to establish symbiosis and reduced larval survivorship. At 31°C, the presence of symbionts further reduced larval survivorship. As sea surface temperatures rise, coral larvae exposed to elevated temperatures during symbiosis onset will likely be negatively impacted, which in turn could affect the establishment of future generations of corals.  相似文献   

19.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

20.
Fish abundance is often better predicted by microhabitat variables on continuous reefs than on isolated patch reefs. Although this was suggested to stem from reduced post-recruitment relocation, this has not been shown experimentally. We found the relationship between the presence of a coral-dwelling fish, Dascyllus marginatus, and the size of its coral host to differ between corals on continuous reefs and the sparsely distributed corals on sandy bottoms. Empty transplanted corals were colonized exclusively by new recruits when on the sandy bottom, and both by new recruits and post-recruitment dispersal of adults when on the continuous reef. New recruits settled predominantly into small corals, although analyses of recruitment patterns were confounded by low recruitment in the studied years. Both tank experiments and field survey data suggest that the presence of recruits in small corals is at least partially driven by predation by the dottyback, Pseudochromis olivaceus, which lives predominantly in large corals within both habitats. Consequently, we suggest that the relationship between fish presence and coral size differs between the habitats due to coral size dependent predation on recruits and variability in the importance of direct recruitment to replenish fish populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号