首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

2.
Abstract: Tropical pastures present multiple barriers to tree regeneration and restoration. Relict trees serve as “regeneration foci” because they ameliorate the soil microclimate and serve as safe spots for dispersers. Here, we describe another mechanism by which remnant trees may facilitate pasture regeneration: the presence of seed banks in the canopy soil that accumulates from decomposing epiphytes within the crowns of mature remnant trees in tropical cloud forest pastures. We compared seed banks of canopy soils (histosols derived from fallen leaves, fruits, flower, and twigs of host trees and epiphytes, dead bryophytes, bark, detritus, dead animals, and microorganisms, and dust that accumulate on trunks and the upper surfaces of large branches) in pastures, canopy soils in primary forest trees, and soil on the forest floor in Monteverde, Costa Rica. There were 5211 epiphytic and terrestrial plant seeds in the three habitats. All habitats were dominated by seeds in a relatively small number of plant families, most of which were primarily woody, animal pollinated, and animal dispersed. The density of seeds on the forest floor was greater than seed density in either pasture‐canopy or forest‐canopy soils; the latter two did not differ. Eight species in 44 families and 61 genera from all of the habitats were tallied. There were 37 species in the pasture‐canopy soil, 33 in the forest‐canopy soil, and 57 on the forest floor. Eleven species were common to all habitats. The mean species richness in the pasture canopy was significantly higher than the forest canopy (F =83.38; p < 0.02). Nonmetric multidimensional scaling ordination revealed that the communities were distinct. Greenhouse experiments verified that many of these seeds were viable, with 29 taxa germinating (23 taxa in pruned mats [mimic of exposed conditions] and 16 taxa in control mats [intact conditions]) within 2 months of observation. Nearly half the species that germinated were characteristic of primary forests (primary forest samples, 19%; pasture samples, 29%). This supports the idea that canopy seed banks of pasture trees can function as time capsules by providing propagules that are removed in both space and time from the primary forest. Their presence may enhance the ability of pastures to regenerate more quickly, reinforcing the importance of trees in agricultural settings.  相似文献   

3.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   

4.
McConkey KR  Brockelman WY 《Ecology》2011,92(7):1492-1502
Plant species with generalized dispersal mutualisms are considered to be robust to local frugivore extinctions because of redundancy between dispersal agents. However, real redundancy can only occur if frugivores have similar foraging and ranging patterns and if fruit is a limiting resource. We evaluated the quantitative and qualitative contributions of seed dispersers for an endochorus mast-fruiting species, Prunus javanica (Rosaceae) in Khao Yai National Park, Thailand, to evaluate the potential redundancy of dispersers. Data were collected from tree watches, seed/fruit traps, and seed transects under and away from fruiting trees, feeding and seed deposition by gibbons (Hylobates lar), and evaluations of seed and first-year seedling survival. We identified three clusters of dispersers within the network. Most (>80%) frugivore species observed were small birds and squirrels that were not functional dispersers, dropping most seeds under or very near the tree crown, where seedling survival was ultimately nil. Monkeys (Macaca leonina) were low-quality, short-range dispersers, but they dispersed large numbers of seeds and were responsible for 67% of surviving first-year seedlings. Gibbons and Oriental Pied Hornbills (Anthracoceros albirostris) handled few fruits, but they provided the highest quality service by carrying most seeds away from the canopy to medium and long distances, respectively. Although there was overlap in the deposition patterns of the functional dispersers, they displayed complementary, rather than redundant, roles in seed dispersal. Satiation of all functional dispersers further limited their capacity to "replace" one another. Redundancy must be evaluated at the community level because each type of disperser may shift to different species in the non-masting years of P. javanica. Our results underscore the need for research on broader spatial and temporal scales, which combines studies of dispersal and plant recruitment, to better understand mechanisms that maintain network stability.  相似文献   

5.
Most of the old-growth redwood ( Sequoia sempervirens ) in California has been cut; regenerating forests will probably never resemble those that were harvested, and what old growth remains on private land occurs in small, isolated remnant patches. The landscapes in which these stands occur differ so markedly from their original condition that their value as habitat to many species of wildlife, including bats, is unknown. Previous research in unfragmented redwood forests demonstrated that bats use basal hollows in old-growth redwoods as roosts. We sought to determine whether bats use similar old-growth trees as roosts when they occur in small, remnant patches of isolated old growth on commercial forest land. We compared bat occurrence in remnant and contiguous stands by collecting guano in traps suspended in hollows and by monitoring flight activity with ultrasonic bat detectors. Hollows in trees within the remnant stands had significantly more guano deposited per tree than the trees within the contiguous forest. The mean numbers of bat passes per night were statistically indistinguishable between the two treatments, although mean flight activity in the remnant stands was greater than in the contiguous forest. Bats frequently used basal hollows in small (<5 ha) stands of remnant old growth, which may be due to the closer proximity of remnants to stream courses, to their greater interface with edge where foraging success may be greater, or to the fact that the lower density of hollow-bearing trees in remnants than in contiguous forest favored greater use per tree. Significant use of small, residual old-growth redwood provides reason to maintain these remnants in managed landscapes as potentially important habitat for forest bats.  相似文献   

6.
Abstract:  The sustainability of seed extraction from natural populations has been questioned recently. Increased recruitment failure under intense seed harvesting suggests that seed extraction intensifies source limitation. Nevertheless, areas where more seeds are collected tend to also have more intense hunting of seed-dispersing animals. We studied whether such hunting, by limiting disperser activity, could cause quantitative dispersal limitation, especially for large crops and for crops in years of high seed abundance. In each of four Carapa procera (Meliaceae) populations in French Guiana and Surinam, two with hunting and two without, we compared seed fate for individual trees varying in crop size in years of high and low population-level seed abundance. Carapa seeds are a nontimber forest product and depend on dispersal by scatter-hoarding rodents for survival and seedling establishment. Hunting negatively affected the proportion of seeds dispersed and caused greater numbers of seeds to germinate or be infested by moths below parent trees, where they would likely die. Hunting of seed-dispersing animals disproportionally affected large seed crops, but we found no additional effect of population-level seed abundance on dispersal rates. Consistently lower rates of seed dispersal, especially for large seed crops, may translate to lower levels of seedling recruitment under hunting. Our results therefore suggest that the subsistence hunting that usually accompanies seed collection is at the cost of seed dispersal and may contribute to recruitment failure of these nontimber forest products. Seed extraction from natural populations may affect seedling recruitment less if accompanied by measures adequately incorporating and protecting seed dispersers.  相似文献   

7.
McConkey KR  Drake DR 《Ecology》2006,87(2):271-276
Rare species play limited ecological roles, but particular behavioral traits may predispose species to become functionally extinct before becoming rare. Flying foxes (Pteropodid fruit bats) are important dispersers of large seeds, but their effectiveness is hypothesized to depend on high population density that induces aggressive interactions. In a Pacific archipelago, we quantified the proportion of seeds that flying foxes dispersed beyond the fruiting canopy, across a range of sites that differed in flying fox abundance. We found the relationship between ecological function (seed dispersal) and flying fox abundance was nonlinear and consistent with the hypothesis. For most trees in sites below a threshold abundance of flying foxes, flying foxes dispersed < 1% of the seeds they handled. Above the threshold, dispersal away from trees increased to 58% as animal abundance approximately doubled. Hence, flying foxes may cease to be effective seed dispersers long before becoming rare. As many species' populations decline worldwide, identifying those with threshold relationships is an important precursor to preservation of ecologically effective densities.  相似文献   

8.
A Comparison of Logging Systems and Bat Diversity in the Neotropics   总被引:4,自引:0,他引:4  
Abstract:  Evaluating logging systems to determine which are most compatible with the maintenance of biodiversity is of prime importance if tropical forests are to be managed in a sustainable way. Bats are model taxa for this purpose. Two different logging systems are used in the natural forest of the Victoria-Mayaro Forest Reserve in Trinidad: open range and periodic block. Open range is a continuous harvesting system and, in common with most methods used to log tropical forests worldwide, has few harvest controls other than girth limits for selected species. Periodic block is a polycyclic system, with felling based on ecological criteria assumed to be compatible with the maintenance of biodiversity. To compare the effects of periodic block and open-range systems on biodiversity, we determined bat species richness and abundance in each system and in primary forest. We caught bats in mist nets set at ground level and in the canopy and in harp traps. In total 1959 individuals representing 38 species were captured. Species richness was similar among primary forest and logged forest habitats, although bat diversity was lower in logged forest. The distributions of bat species abundance did not differ significantly between logged forest and primary forest. We found, however, that both logging systems lead to a decrease in gleaning animalivores and an increase in frugivores. The increase in frugivores was likely the result of an increase in the abundance of bat-dispersed pioneer fruiting plants in logged forest. Bats of periodic-block-managed forest were more similar to those of primary forest than those of forest logged using the open-range system, indicating that the periodic-block system is more compatible with the maintenance of bat diversity. Our results support the suggestion that the measured use of tropical forests can largely be compatible with biodiversity conservation.  相似文献   

9.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

10.
Abstract: We assessed the potential effect of frugivore extinctions on forest regeneration in the North Negros Forest Reserve, a forest fragment that is one of the last remaining wet tropical rainforest ecosystems in the biogeographic region of the central Philippine Islands. We evaluated foraging observations of 19 species of birds, fruit bats, and other mammals in three successional habitats and identified tree species that are potentially at risk because their seeds are dispersed by frugivores that are seriously endangered. The relative abundance of zoochorous trees in this forest community was exceptionally high (80%), suggesting that the process of forest regeneration will change drastically if endangered frugivores are hunted to extinction. We grouped 45 tree species as early-, mid-, or late-successional species based on their population structure and we demonstrated that early-successional tree species were visited by a wide spectrum of frugivores, whereas mid- and late-successional species were visited mostly by hornbills (Bucerotidae) and fruit pigeons (Columbidae). Late-successional tree species were most specialized with respect to dispersers and could therefore be susceptible to extinction. We recommend tree species that could be useful for assisted natural regeneration projects in the reserve because they are visited by a variety of frugivores. Of those, we recommend early-successional trees for open-field plantations and mid-successional tree species for enrichment plantings.  相似文献   

11.
The fringe-lipped bat, Trachops cirrhosus, is an eavesdropping predator that hunts frogs and katydids by approaching these preys' sexual advertisement calls. In captivity, bats can rapidly learn to associate novel acoustic stimuli with food rewards. It is unknown how this learning ability is related to foraging behavior in the wild where prey and the calls that identify them vary over space and time. In two bat populations that differ in available prey species (Soberanía, Panama, and La Selva, Costa Rica), we presented wild-caught bats with frog calls, katydid calls, and control stimuli. Bats in Soberanía were significantly more responsive to complex calls and choruses of the túngara frog, Physalaemus pustulosus, than were bats in La Selva. La Selva bats were significantly more responsive to katydid calls (Steirodon sp.) than Soberanía bats. We also examined seasonal variation in bat response to prey cues. Bats were captured in Soberanía in dry and wet seasons and presented with the calls of a dry season breeding frog (Smilisca sila), a wet season breeding frog (P. pustulosus), and four katydid species. Bats captured in the dry season were significantly more responsive to the calls of S. sila than bats captured in the wet season, but there were no seasonal differences in response to the calls of P. pustulosus or the katydid calls. We demonstrate plasticity in the foraging behavior of this eavesdropping predator but also show that response to prey cues is not predicted solely by prey availability.  相似文献   

12.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

13.
14.
Tropical forest recovery in pastures is slowed by a number of biotic and abiotic factors, including a lack of adequate seed dispersal and harsh microclimatic extremes. Accordingly, methods to accelerate forest recovery must address multiple impediments. Here, we evaluated the ability of "tree islands" to serve as "recruitment foci" in a two-year study at three sites in northern Honduras. Islands of three sizes (64, 16, and 4 m2) and at two distances to secondary forest (20 and 50 m) were created by planting 2 m tall vegetative stakes of two native species: Gliricidia sepium (Fabaceae) and Bursera simaruba (Burseraceae), each in monoculture. Open-pasture "islands" of equal sizes served as controls. Tree islands reduced temperature and light (PAR) extremes as compared to open pasture, creating a microenvironment more favorable to seedling establishment. Seed-dispersing birds (quantified at one site only) showed an overwhelming preference for islands; 160 visits were recorded to islands compared with one visit to open pasture. Additionally, frugivores visited large islands more often, and for longer time periods, than small islands, thereby increasing the likelihood of a dispersal event there. In total, 144 140 seeds belonging to 186 species were collected in islands; more than 80% were grasses. Tree islands increased zoochorous tree seed rain; seed density and species richness were greater in tree islands than in open pasture, and large islands had greater seed density than smaller islands (Gliricidia only), suggesting that they are more effective for restoration. Distance to forest did not affect seed rain. A total of 543 seedlings and 41 species established in islands; > 85% were zoochorous. Seedling density did not differ among treatments (mean 0.2 seedlings/m2 for islands vs. 0.1 seedlings/m2 for pasture), although an increasing trend in tree islands over the course of two years suggests that seedling recruitment is accelerated there. Lastly, similar seedling densities were censused in the 1 m perimeter surrounding islands, suggesting that islands can expand outward into pasture. Planting vegetative stakes to create tree islands in pastures accelerates forest recovery by overcoming a number of impediments, and presents a simple, broadly applicable alternative for facilitating forest regeneration in abandoned pastures.  相似文献   

15.
As tropical regions are converted to agriculture, conservation of biodiversity will depend not only on the maintenance of protected forest areas, but also on the scope for conservation within the agricultural matrix in which they are embedded. Tree cover typically retained in agricultural landscapes in the neotropics may provide resources and habitats for animals, but little is known about the extent to which it contributes to conservation of animal species. Here, we explore the animal diversity associated with different forms of tree cover for birds, bats, butterflies, and dung beetles in a pastoral landscape in Nicaragua. We measured species richness and abundance of these four animal taxa in riparian and secondary forest, forest fallows, live fences, and pastures with high and low tree cover. We recorded over 20,000 individuals of 189 species including 14 endangered bird species. Mean abundance and species richness of birds and bats, but not dung beetles or butterflies, were significantly different among forms of tree cover. Species richness of bats and birds was positively correlated with tree species richness. While the greatest numbers of bird species were associated with riparian and secondary forest, forest fallows, and pastures with >15% tree cover, the greatest numbers of bat species were found in live fences and riparian forest. Species assemblages of all animal taxa were different among tree cover types, so that maintaining a diversity of forms of tree cover led to conservation of more animal species in the landscape as a whole. Overall, the findings indicate that retaining tree cover within agricultural landscapes can help conserve animal diversity, but that conservation efforts need to target forms of tree cover that conserve the taxa that are of interest locally. Preventing the degradation of remaining forest fragments is a priority, but encouraging farmers to maintain tree cover in pastures and along boundaries may also make an important contribution to animal conservation.  相似文献   

16.
A fundamental way in which animal-dispersed plants can influence the viability and distribution of dispersed seeds is through control of retention time in the guts of dispersers. Using two species of wild chilies and their dispersers, we examined how chemical and physical properties of fruits and seeds mediate this interaction. Capsicum chacoense is polymorphic for pungency, occurs in Bolivia, and is dispersed mostly by elaenias. Capsicum annuum is not polymorphic, occurs in Arizona (USA), and is dispersed mostly by thrashers. We first tested whether capsaicin, the substance responsible for the pungency of chilies, affects gut retention time of seeds in primary dispersers. Capsaicin slowed gut passage of seeds but did so in a manner that differed greatly between bird species because the constipative effects of capsaicin occurred only after an 80-minute time lag. Elaenias in Bolivia held only 6% of C. chacoense seeds for > 80 minutes, whereas thrashers in Arizona held 78% of C. annuum seeds for > 80 minutes. Next we examined the effects of retention time on seed viability and germination. Increased retention resulted in a greater proportion of seeds germinating in C. annuum, had no effects on non-pungent C. chacoense, and had negative effects on pungent C. chacoense. These divergent effects are explained by differences in seed coat morphology: seed coats of pungent C. chacoense are 10-12% thinner than those of the other two types of seeds. Thus, longer retention times damaged seeds with the thinnest seed coats. In C. annuum, seed viability remained high regardless of retention time, but germination increased with retention, suggesting a role for scarification. Thus, in C. annuum, fruit chemistry appears well matched with seed morphology and disperser physiology: capsaicin extends gut retention for most seeds, resulting in greater seed scarification and higher germination rates. Increased retention of pungent C. chacoense seeds is detrimental, but because the primary consumers have short retention times, capsaicin slows only a small proportion of seeds, minimizing negative effects. These results illustrate the importance of context in studies of fruit secondary metabolites. The same chemical can have different impacts on plant fitness depending on its morphological, physiological, and ecological context.  相似文献   

17.
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under well-controlled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation–dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included big-eared horseshoe bats (Rhinolophus macrotis), Blyth’s horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka’s trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.  相似文献   

18.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

19.
Urban areas often contain sizeable pockets of degraded land, such as inactive landfills, that could be reclaimed as wildlife habitat and as connecting links to enhance remnant natural areas. In the northeastern U.S., many such lands fail to undergo natural succession to woodland, instead retaining a weedy, herbaceous cover for many years. We hypothesize that seed dispersal is a limiting factor, and that a form of secondary succession could be stimulated by introducing clusters of trees and shrubs to attract avian seed dispersers. As a direct test, we censused a 1.5-ha experimental plantation on the Fresh Kills Landfill (Staten Island, New York) one year after installation, in search of evidence that the plantation was spreading or increasing in diversity. The 17 planted species, many from coastal scrub forests native to this region, were surviving well but contributed almost no seedlings to the area, in part because only 20% of the installed trees or shrubs were reproductive. Of the 1079 woody seedlings found, 95% came from sources outside the plantation; most (71%) were from fleshy-fruited, bird-dispersed plants from nearby woodland fringes. Although the restoration planting itself had not begun to produce seedlings, it did function as a site for attracting dispersers, who enriched the young community with 20 new species. One-fourth of all new recruits were from nine additional wind-dispersed species. Locations with a high ratio of trees to shrubs had proportionately more recruits, indicating that plant size contributed to disperser attraction. The density of new recruits of each species was dependent on distance from the nearest potential seed source. Introducing native species with the capacity to attract avian dispersers may be the key to success of many restoration programs.  相似文献   

20.
Abstract:  Small-scale, local disturbance of tropical forests, for example from selective logging, is widespread, but its effects on biodiversity and ecosystem function have rarely been studied. In 3 East African tropical rainforests, we investigated the effect of different levels of local forest disturbance on the frugivore community and on tree visitation and fruit removal rates of the small-seeded tree Celtis durandii. We quantified birds and primates in little and heavily disturbed sites, distinguishing between forest specialists, forest generalists, and forest visitors. We quantified frugivorous tree visitors and seed removal rates of C. durandii trees in the same sites. Forest disturbance reduced the species richness and density of the frugivore community and of forest specialists. Frugivorous species and individuals visiting the study trees were reduced significantly, which led to a marginally significant decline in fruit removal by all frugivores and a significant reduction in removal by forest specialists. Reduction in fruit removal by forest specialists was not compensated for by increases in removal by forest generalists or visitors. Results did not differ among the 3 rainforests, which suggests they were consistent at a regional scale. So local forest disturbance led to a loss of frugivores and their seed removal services. This suggests that large-seeded tree species and trees with small fruits are losing seed dispersers. Thus, local forest disturbance appears to have a more general negative impact on frugivores and their seed dispersal services than anticipated previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号