首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亚热带常绿阔叶林下分布着可塑性强的耐荫植物,其叶片应对外界干扰的防御对策至少有物理性防御和化学性防御两种,这两种防御代价在一定的昆虫取食压力下在理论上应该存在权衡.为检验这种权衡是否普遍存在,分别测定了重庆缙云山4个常绿物种——光叶山矾(Symplocos lancifolia)、四川山矾(S.setchuensis)、四川毛蕊茶(Camellialawii)和细枝柃(Eurya loquaiana)在林窗和林下两种对照光环境下个体叶片的光饱和下的净光合速率、叶面积干重和部分化学防御物质含量.结果表明,4个物种生活在林窗的个体单位叶面积干重、叶片氮含量和单位面积净光合速率通常高于林下的个体,但是单位质量和单位面积的总酚含量和C/N值却低于林下的个体.蛋白质和非结构性碳水化合物含量在不同生境中没有显著差异.因为不同物种叶片对光照条件的响应不同,不同参数的变化在两种生境间的差异并不完全一致.本研究结果在一定程度上暗示了物种在林窗和林下分别倾向于采取物理和化学性防御对策,并初步证实了两种防御强度之间存在权衡关系.图4参40  相似文献   

2.
Plant–insect interactions, which are strongly mediated by chemical defenses, have the potential to shape invasion dynamics. Despite this, few studies have quantified natural variation in key defensive compounds of invasive plant populations, or how those defenses relate to levels of herbivory. Here, we evaluated variation in the iridoid glycosides aucubin and catalpol in rosette plants of naturally occurring, introduced populations of the North American invader, Verbascum thapsus L. (common mullein; Scrophulariaceae). We examined two scales that are likely to structure interactions with insect herbivores—among populations and within plant tissues (i.e., between young and old leaves). We additionally estimated the severity of damage incurred at these scales due to insect chewing herbivores (predominantly grasshoppers and caterpillars), and evaluated the relationship between iridoid glycoside content and leaf damage. We found significant variation in iridoid glycoside concentrations among populations and between young and old leaves, with levels of herbivory strongly tracking leaf-level investment in defense. Specifically, across populations, young leaves were highly defended by iridoids (averaging 6.5× the concentration present in old leaves, and containing higher proportions of the potentially more toxic iridoid, catalpol) and suffered only minimal damage from generalist herbivores. In contrast, old leaves were significantly less defended and accordingly more substantially utilized. These findings reveal that quantitative variation in iridoid glycosides is a key feature explaining patterns of herbivory in an introduced plant. In particular, these data support the hypothesis that defenses limit the ability of generalists to feed on mullein’s well-defended young leaves, resulting in minimal losses of high-quality tissue, and increasing performance of this introduced species.  相似文献   

3.
Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus   总被引:3,自引:0,他引:3  
Summary. Chemical defense against herbivores has rarely been investigated for freshwater plants, possibly due to the common misconception that herbivory on aquatic macrophytes is low and would not select for chemical defenses. In previous work, the freshwater angiosperm Saururus cernuus was shown to be a low preference food for omnivorous crayfish despite its high nutrient value and relatively soft texture. We used feeding by the crayfish Procambarus clarkii to guide fractionation of the deterrent lipid-soluble extract of this plant, leading to the identification of seven deterrent lignoid metabolites, (–)-licarin A, (+)-saucernetin, (–)-dihydroguaiaretic acid, (–)-sauriols A and B, (–)-saucerneol, and (–)-saucerneol methyl ether. Lignans have been implicated in terrestrial plant chemical defenses as insect growth inhibitors, insect toxins, nematocides, antibacterial, and antifungal agents. However, these activities have rarely been demonstrated using ecologically relevant methodologies in terrestrial systems, and never before in freshwater systems. The widespread nature of lignans amongst very distantly related plants, along with their rich diversity of molecular structure, suggests that they could play a large role in mediating plant-herbivore interactions. In addition to the lignoid compounds we identified, there were other compounds present in low concentration or unstable compounds that were deterrent, that did not appear to be lignans, but that we were unable to identify. This plant thus appears to be defended by a complex mixture of natural products. Received 6 June 2000; revised 23 August 2000; accepted 2 September 2000  相似文献   

4.
Bacteria play important roles in plant–herbivore interactions and communicate with each other with chemical signals, often N-acylhomoserine lactones (AHL). Plant responses to these signals may influence resistance to microbial attack, but the effects of these signals on herbivore defense are unstudied. To determine whether AHL influence jasmonate (JA)-mediated herbivore resistance in Nicotiana attenuata, we treated wild-type (WT) and JA-deficient genotypes (antisense expression of NaLOX3) with N-hexanoyl-dl-homoserine lactone (C6-HSL) and measured the performance of Manduca sexta larvae. Larval mass gain on C6-HSL-treated WT plants was equivalent to that on non-treated NaLOX3-silenced plants, but significantly 4.1-fold larger than on untreated WT plants. Mass gain was unaffected by C6-HSL treatment of NaLOX3-silenced plants. Microarray analysis of the plants elicited with C6-HSL and JA inducing fatty acid–amino acid conjugates revealed a down-regulation of a proteinase inhibitor in the C6-HSL-treated WT plants. The results therefore suggest that the increased performance of M. sexta was due to direct or indirect effect of C6-HSL on JA-mediated defenses.  相似文献   

5.
In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study focuses on the dynamics of induced plant responses induced by single and double herbivory, and their effects on successive herbivores. Morphological (leaf length, area and trichome density) and chemical changes (leaf alkenyl and indole glucosinolates) in Brassica juncea were evaluated 4, 10, 14 and 20 days after damage by the specialist Plutella xylostella alone, or together with the generalist Spodoptera litura. To assess the biological effect of the plant’s responses, the preference and performance of both herbivores on previously induced plants were measured. We found that alkenyl glucosinolates were induced 20 days after damage by P. xylostella alone, whereas their levels were elevated as early as 4 days after double herbivory. Trichome density was increased in both treatments, but was higher after double herbivory. Interestingly, there was an overall decrease in indole glucosinolates and an increase in leaf size due to damage by P. xylostella, which was not observed during double damage. S. litura preferred and performed better on undamaged plants, whereas P. xylostella preferred damaged plants and performed better on plants damaged 14 and 10 days after single and double herbivory, respectively. Our results suggest that temporal studies involving single versus multiple attacker situations are necessary to comprehend the role of induced plant responses in plant–herbivore interactions.  相似文献   

6.
Summary. The among-leaves allocation of DIBOA, a hydroxamic acid associated with plant resistance, in the shoot of rye (Secale cereale) was evaluated over the vegetative development of the plant. The appropriateness of using the concentration of secondary metabolites, DIBOA in this case, as the parameter to evaluate defense allocation in plants is discussed. Both biological and statistical arguments are put forward to suggest that allocation of chemical defenses should refer to absolute content and not to concentration. Results showed that leaf age was significantly linked to leaf concentration of DIBOA, young leaves having higher concentrations. In contrast, leaf content of DIBOA, our proposed currency of allocation, was not significantly higher in younger leaves. Furthermore, a regression analysis showed that the DIBOA content of leaves was better explained by the leaf relative biomass (proportion of shoot biomass) than by leaf biomass itself. It is suggested that, rather than leaf age, leaf relative biomass is the major factor determining DIBOA allocation in rye shoots. It is proposed that studies addressing within-plant defense allocation should use chemical defense content as the currency, emphasizing the major factors driving this process and its underlying mechanisms. Likewise, it is proposed that studies aiming at characterizing optimal patterns of plant defense should use chemical defense concentration as the currency, and be accompanied by evaluations of the actual resistance against herbivores of the plant parts analyzed, together with the effect on plant fitness. Received 19 February 1999; accepted 28 April 1999.  相似文献   

7.
Alba C  Bowers MD  Hufbauer R 《Ecology》2012,93(8):1912-1921
Optimal defense theory posits that plants with limited resources deploy chemical defenses based on the fitness value of different tissues and their probability of attack. However, what constitutes optimal defense depends on the identity of the herbivores involved in the interaction. Generalists, which are not tightly coevolved with their many host plants, are typically deterred by chemical defenses, while coevolved specialists are often attracted to these same chemicals. This imposes an "evolutionary dilemma" in which generalists and specialists exert opposing selection on plant investment in defense, thereby stabilizing defenses at intermediate levels. We used the natural shift in herbivore community composition that typifies many plant invasions to test a novel, combined prediction of optimal defense theory and the evolutionary dilemma model: that the within-plant distribution of defenses reflects both the value of different tissues (i.e., young vs. old leaves) and the relative importance of specialist and generalist herbivores in the community. Using populations of Verbascum thapsus exposed to ambient herbivory in its native range (where specialist and generalist chewing herbivores are prevalent) and its introduced range (where only generalist chewing herbivores are prevalent), we illustrate significant differences in the way iridoid glycosides are distributed among young and old leaves. Importantly, high-quality young leaves are 6.5x more highly defended than old leaves in the introduced range, but only 2x more highly defended in the native range. Additionally, defense levels are tracked by patterns of chewing damage, with damage restricted mostly to low-quality old leaves in the introduced range, but not the native range. Given that whole-plant investment in defense does not differ between ranges, introduced mullein may achieve increased fitness simply by optimizing its within-plant distribution of defense in the absence of certain specialist herbivores.  相似文献   

8.
Insects feeding on aboveground and belowground tissues can influence each other through their shared plant and this is often mediated by changes in plant chemistry. We examined the effects of belowground root fly (Delia radicum) herbivory on the performance of an aboveground herbivore (Plutella xylostella) and its endoparasitoid wasp (Cotesia vestalis). Insects were reared on three populations of wild cabbage (Brassica oleracea) plants, exhibiting qualitative and quantitative differences in root and shoot defense chemistry, that had or had not been exposed to root herbivory. In addition, we measured primary (amino acids and sugars) and secondary [glucosinolate (GS)] chemistry in plants exposed to the various plant population-treatment combinations to determine to what extent plant chemistry could explain variation in insect performance variables using multivariate statistics. In general, insect performance was more strongly affected by plant population than by herbivory in the opposite compartment, suggesting that population-related differences in plant quality are larger than those induced by herbivory. Sugar profiles were similar in the three populations and concentrations only changed in damaged tissues. In addition to population-related differences, amino acid concentrations primarily changed locally in response to herbivory. Whether GS concentrations changed in response to herbivory (indole GS) or whether there were only population-related differences (aliphatic GS) depended on GS class. Poor correlations between performance and chemical attributes made biological interpretation of these results difficult. Moreover, trade-offs between life history traits suggest that factors other than food nutritional quality contribute to the expression of life history traits.  相似文献   

9.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

10.
A recent surge in attention devoted to the ecology of soil biota has prompted interest in quantifying similarities and differences between interactions occurring in above- and belowground communities. Furthermore, linkages that interconnect the dynamics of these two spatially distinct ecosystems are increasingly documented. We use a similar approach in the context of understanding plant defenses to herbivory, including how they are allocated between leaves and roots (constitutive defenses), and potential cross-system linkages (induced defenses). To explore these issues we utilized three different empirical approaches. First, we manipulated foliar and root herbivory on tobacco (Nicotiana tabacum) and measured changes in the secondary chemistry of above- and belowground tissues. Second, we reviewed published studies that compared levels of secondary chemistry between leaves and roots to determine how plants distribute putative defense chemicals across the above- and belowground systems. Last, we used meta-analysis to quantify the impact of induced responses across plant tissue types. In the tobacco system, leaf-chewing insects strongly induced higher levels of secondary metabolites in leaves but had no impact on root chemistry. Nematode root herbivores, however, elicited changes in both leaves and roots. Virtually all secondary chemicals measured were elevated in nematode-induced galls, whereas the impact of root herbivory on foliar chemistry was highly variable and depended on where chemicals were produced within the plant. Importantly, nematodes interfered with aboveground metabolites that have biosynthetic sites located in roots (e.g., nicotine) but had the opposite effect (i.e., nematodes elevated foliar expression) on chemicals produced in shoots (e.g., phenolics and terpenoids). Results from our literature review suggest that, overall, constitutive defense levels are extremely similar when comparing leaves with roots, although certain chemical classes (e.g., alkaloids, glucosinolates) are differentially allocated between above- and belowground parts. Based on a meta-analysis of induced defense studies we conclude that: (1) foliar induction generates strong responses in leaves, but much weaker responses in roots, and (2) root induction elicits responses of equal magnitude in both leaves and roots. We discuss the importance of this asymmetry and the paradox of cross-system induction in relation to optimal defense theory and interactions between above- and belowground herbivory.  相似文献   

11.
Plant defense against herbivores often involves constitutive and inducible mechanisms of resistance. Obligate ant-plants, which provide food and housing for ants, are thought to primarily rely on ants for defense against herbivores. This form of plant defense has largely been viewed as static. We have been investigating the dynamic nature of Azteca ants as an inducible defense of Cecropia trees. Ants rapidly recruit to and patrol sites of foliar damage. We propose that Azteca ants can be viewed as an inducible defense for Cecropia trees because of their sensitivity to cues associated with herbivory, their rapid and aggressive recruiting ability, and their reclaimable and redeployable nature as a plant defense. In this study, we examine ant behavior following plant damage, and the potential cues that indude ant recruitment. We found that ants present on leaves when the plant is damaged leave the damaged leaf and recruit other ants to it, presumably by laying recruitment trails. Volatile leaf cues associated with herbivory were important in eliciting an induced response in two experiments. However, we found that cues associated with a congeneric plant elicited a much stronger ant response than conspecific cues. Although the type of leaf damage (gaping wounds versus leaf edge wounds) did not affect the level of ant recruitment, the extent of damage did. Leaves with one hole punched showed a 50% increase in ants, while leaves with five holes punched in them elicited a 100% increase in ant numbers. In sum, it appears that multiple plant-related cues associated with herbivory are involved in induction of ant recruitment in the Cecropia-Azteca system. We discuss the generality of ant responses to herbivory in obligate ant-plant systems, and in facultative ant-plant associations, which may be more common. Received: 23 March 1998 / Accepted after revision: 5 July 1998  相似文献   

12.
In order to investigate the effects of clonal integration on the adaptation of clonal plants to the environmental stress of homogeneous herbivory, we conducted a greenhouse experiment to investigate the ecophysiological response characteristics of Phalaris arundinacea collected from the riparian zone of the Poyang Lake wetland and Le'an River in Jiangxi Province and the effect of clonal integration on this dominant plant under two-months of simulated cyclical homogenous herbivory. Simulated herbivory strength was set at four different levels: no leaf removal (control) and 25%, 50%, and 75% leaf removal. We implemented two methods of clonal integration including no integration, in which the rhizome connection was severed, and integration, in which the rhizome connection was intact. We found that simulated herbivory significantly decreased the number of leaves, total shoot length, number of ramets, and biomass of P. arundinacea (P < 5%), regardless of whether the rhizomes were intact or severed. Ramets with severed rhizome connections (RRC) generally had higher growth indices than those with intact rhizome connections (RIC). Severing rhizomes did not significantly affect the chlorophyll content of P. arundinacea, while RRC under simulated herbivory intensities of 25% and 50% leaf removal had higher chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chlt) contents than RIC did, and simulated herbivory increased the chlorophyll contents of all ramets. RRC net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were all higher in RRC than they were in RIC under simulated herbivory intensities of 50% and 75% leaf removal; however, the opposite relationship was observed under a simulated herbivory intensity of 25% leaf removal. Further, simulated herbivory limited the photosynthetic index of P. arundinacea. These effects resulted in an inadequate accumulation of nutrients in the plant. Phalaris arundinacea can adapt to simulated herbivory treatments in terms of growth, but clonal integration cannot improve the growth of P. arundinacea under a homogeneous herbivory treatment. © 2018 Science Press. All rights reserved.  相似文献   

13.
三种菊科入侵植物的生长与化学防御的关系研究   总被引:1,自引:0,他引:1  
“生活史理论”认为,植物可利用的资源总量是有限的,在植物的不同功能之间存在着此消彼长的权衡关系。入侵植物的生长和化学防御一般优于本地植物,那么其生长与化学防御之间是否存在权衡及其权衡关系怎样,目前尚不清楚。以广东省3种菊科入侵植物[三裂叶蟛蜞菊(Wedelia trilobata (L.) Hitchc.)、飞机草(Eupatorium odoratum)和薇甘菊(Mikania micrantha)]为研究对象,并分别以近缘或伴生的本地植物[蟛蜞菊(Wedelia chinenses)、华泽兰(Eupatorium chinense)和鸡矢藤(Paederia scandens)]为对照,研究入侵植物的生长特性(相对生长率和比叶面积)与化学防御物质(缩合单宁和总酚)含量,并基于这2种光合碳分配的主要形式,探讨入侵植物生长与化学防御之间的权衡关系。结果表明:3种入侵植物的相对生长率均高于本地对照种;薇甘菊的比叶面积大于对照种,而其他2种无明显优势。薇甘菊和三裂叶蟛蜞菊的缩合单宁显著高于对照种,飞机草的总酚含量高于对照种。我们的结果显示,入侵植物的生长和化学防御均优于本地植物,但它们的碳同化能力相近;因此,入侵植物特殊的内在资源分配与利用机制可能是其成功入侵的关键。  相似文献   

14.
Allocating chemical defenses to regions or tissues most at risk for predatory attack may provide protection while simultaneously minimizing associated metabolic costs. Chemical defense allocation patterns were investigated in the aspiculate sponges Ircinia felix, I. campana, and Aplysina fulva collected between July 2005 and April 2006 from J Reef off the coast of Georgia, U.S.A. It was predicted that chemical defenses would be (1) higher in the outermost 2 mm layer of the sponge; (2) positively correlated with tissue nutritional quality; and (3) correlated with structural components such as spongin fibers. Whereas defensive chemicals were concentrated in the outer 2 mm of A. fulva, the Ircinia species had higher concentrations in deeper tissue layers. Furthermore, no significant positive or negative correlation between chemical defenses and nutritional quality or levels of structural components was observed in these sponges. Overall, these results do not support the prediction that predation pressure by fish and large mobile invertebrates significantly impacts chemical defense allocation in these sponges.  相似文献   

15.
Morrison WE  Hay ME 《Ecology》2012,93(1):65-74
Increased herbivory at lower latitudes is hypothesized to select for more effective plant defenses. Feeding assays with seaweeds and salt marsh plants support this hypothesis, with low-latitude plants experiencing greater damage in the field and being less palatable than higher-latitude plants. We tested this hypothesis for freshwater macrophytes because they offered an independent plant lineage and habitat type for testing this general hypothesis and because the patchiness of consumer occupancy across isolated water bodies might produce local variance in herbivory that would override geographic variance and produce different results for this habitat type. When we fed eight congeneric pairs of live plants from four sites in Indiana vs. four sites in South Florida (-215 and 0 frost days/yr respectively) to three species of crayfishes and one species of snail, three of the four herbivores significantly preferred high-latitude to low-latitude plants. For two crayfishes that differed in feeding on live plants (one favoring high-latitude plants and one not), we retested feeding using foods composed of freeze-dried and finely ground plants, thus removing structural characteristics while retaining most chemical/nutritional traits. In this assay, both herbivores strongly preferred high-latitude plants, suggesting that lower-latitude plants had been selected for more deterrent chemical traits. When we collected 22 pairs of congeneric plants from 9 sites throughout Indiana vs. 13 sites in Central Florida (-215 and -95 frost days/yr respectively) and tested these in feeding assays with three crayfishes using dried, ground, and reconstituted plant material, we found a significant effect of latitude for only one of three species of herbivore. Overall, our results suggest a preference for high-latitude plants, but the strength of this relationship varied considerably across small scales of latitude that differed considerably in numbers of frost-free days. The difference in results suggests that large changes in frost frequency over small spatial scales may affect selection for plant defenses, that local variance in herbivory overrode differential selection at geographic scales, or that these possibilities interact when durations of cold weather periodically exclude herbivores from shallower habitats, producing heterogeneous selection for defenses at small spatial scales.  相似文献   

16.
Whereas the “escape-and-radiate” plant-herbivore scenario predicts that reciprocating cycles of defense-counter defense foster the evolution of traits with increasing efficacy that accumulate during clade diversification, coevolutionary models of herbivore responses to their enemies remain unexplored. Quantitative information is scarce about how defensive traits perform, interact and become functionally integrated. Moreover, there are few studies that have combined performance and phylogenetic information to detect patterns of trait assembly and trends in defense efficacy. Using field demonstrations of effectiveness and phylogenetic reconstructions, we evaluated patterns of trait precedence and suite assembly by comparing the larval defenses of two beetles, Acromis sparsa and Chelymorpha alternans, which both feed on the leaf surfaces of the same plant, have shields containing host-derived deterrent chemicals and form aggregations. Additionally, female A. sparsa guard their larvae. Using an ecologically relevant bioassay, we quantified the extent to which: (1) gregariousness, size, maternal care and shields affected survival; (2) defenses interacted, and; (3) derived traits and suites outperformed ancestral ones. Regression models ranked traits revealing synergistic interactions. Shields interacted with gregariousness to form the strongest suite. Maternal care contributed to overall higher survival in A. sparsa, an advantage lost after female removal. Phylogenetic reconstruction revealed a sequence of trait accumulation and suite formation. The combined performance-phylogenetic approach revealed: (1) multi-trait interactions amplified effectiveness; (2) a sequence of novel trait origins was followed by suite assembly, and; (3) an incremental trend in defense efficacy congruent with escalation. Multi-trait interactions fostered suite assembly that likely conferred the advantage of enhanced survival in the precarious leaf surface adaptive zone.  相似文献   

17.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

18.
Summary. We characterized the induction of hydroxamic acids (Hx) by aphid infestation in the wild wheat Triticum uniaristatum by addressing the following questions: i) Do different leaves have similar responses to aphid damage?, ii) Is the Hx induction localized or systemic?, iii) How long does the induction last?, and iv) Is the degree of damage related to the magnitude of induced Hx? Based on earlier results on this wheat/aphid system (lack of costs of Hx induction) we expected to find the plant exhibiting cost-saving patterns of response to herbivory. Aphid infestation in the primary leaf led to induced levels of Hx, but no differences in Hx levels were found after infestation of the secondary leaf. Induction of Hx was restricted to the infested leaf (primary leaf). Induced Hx levels exhibited by the primary leaf at the end of aphid infestation were not observed 2 days later. Finally, different aphid densities (between 10 and 40 aphids per leaf) did not produce significant differences in Hx levels in infested primary leaves. Characteristics of Hx induction by aphid infestation in T. uniaristatum partially support the expected cost-saving patterns in the allocation of induced defenses. Received 15 January 1997; accepted 7 July 1997.  相似文献   

19.
Abstract:  Although primary productivity in salt marshes is thought to be controlled by physical forces, recent evidence suggests that human disturbances can drive a switch to consumer control in these ecologically valuable ecosystems. We tested the hypothesis that nitrogen enrichment can trigger consumer control in salt marshes in Narragansett Bay, Rhode Island, with (1) a field experiment in which we manipulated nutrient availability (with nutrient additions) and insect herbivory (with insecticide application), (2) a survey of 20 salt marshes that examined the relationship between marsh nutrient status and herbivore pressure, and (3) insect herbivore removal at high and low nutrient input sites to directly test the hypothesis that nutrient enrichment is increasing insect herbivory in these marshes. Experimental nitrogen eutrophication initially increased plant productivity but eventually led to reduced plant biomass due to insect herbivory, and our surveys revealed that marsh nitrogen supply was a good predictor of herbivore damage to plants. Insects had minimal impacts on primary productivity in pristine marshes, but suppressed primary productivity in eutrophic salt marshes by 50–75%. Thus, eutrophication is currently triggering consumer suppression of primary productivity in New England salt marshes and may ultimately jeopardize the ecological and societal services these systems provide.  相似文献   

20.
Summary.  Tannins are plant defense compounds that exhibit antibiotic (e.g. toxic) and antixenotic (e.g. repellent) effects against an array of plant pests. They are broadly divided into two major groups, hydrolysable tannins (gallotannins and ellagitannins) and proanthocyanidins, each with an undetermined number of compounds. We investigated constitutive levels of hydrolysable tannins and proanthocyanidins in the leaves and stems of American (Castanea dentata Marshall) (Fagales: Fagaceae) and Chinese (C. mollissima Blume) chestnut. American chestnut contained more proanthocyanidins in leaves and stems than Chinese chestnut, but Chinese chestnut contained more foliar hydrolysable tannins. Regardless of these differences, gypsy moth (Lymantria dispar L, Lepidoptera: Lymantriidae) performance did not differ when fed American and Chinese chestnuts. We also investigated the effects of jasmonic acid (JA) treatment on differential tannin induction in American and Chinese chestnut leaves and stems. JA treatment increased proanthocyanidins in American chestnut stems and hydrolysable tannins in both tissue types of American chestnut, but did not influence tannin concentrations in Chinese chestnut leaves or stems. HPLC-ESI-MS analysis of pooled samples suggested that hydrolysable tannins in each tissue were qualitatively comprised primarily of ellagitannins, and JA generally increased the number of hydrolysable tannins that could be detected by ESI-MS. Third, we investigated the performance of gypsy moths on JA treated and untreated American and Chinese chestnut. Caterpillar relative growth was not influenced by JA treatment on Chinese chestnut, but decreased in response to JA application on American chestnut. Our results indicate that JA-dependent defenses differ between these chestnut species. This study improves our understanding of ecologically important differences in tannin induction and herbivore susceptibility in Castanea, and has important implications in efforts for American chestnut restoration and commercial chestnut production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号