首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究应用气相色谱-同位素比值质谱仪(GC-IRMS)对大连不同养殖区刺参氨基酸的碳稳定同位素组成进行分析,同时分析其食物来源的碳稳定同位素组成特征,探究刺参氨基酸稳定同位素组成差异形成的原因,并探讨以此作为刺参产地溯源的可行性.结果显示,刺参氨基酸δ~(13)C平均值为-19.35‰,其中李官、獐子岛较低分别为-25.26‰、-25.41‰,谢屯、大长山较高分别为-8.90‰、-12.59‰,且各地刺参δ~(13)C值差异显著;刺参食源氨基酸δ~(13)C平均值为-20.93‰,其中李官、獐子岛较低分别为-26.19‰、-24.25‰,谢屯、大长山较高分别为-11.58‰、-16.31‰,各地差异显著.发现刺参与其食源氨基酸碳稳定同位素组成有一定相关性,其中必需氨基酸相关性系数为0.97,非必需氨基酸为0.77.各地食源氨基酸δ~(13)C值的差异为各地刺参氨基酸碳稳定同位素组成的差异性提供依据,且发现以非必需氨基酸δ~(13)C值作为指标时对各地刺参区分效果更好.相关结论能为氨基酸的稳定同位素分析技术应用于鉴别刺参来源的真实性提供理论依据.  相似文献   

2.
使用多接收器电感耦合等离子体质谱仪(MC-ICP-MS)测定了小浪底水库鱼体和沉积物中汞同位素的组成.结果显示,小浪底水库鱼体具有偏负的δ~(202)Hg和偏正的Δ~(199)Hg(δ~(202)Hg:-0.26‰±0.30‰;Δ~(199)Hg:0.79‰±0.08‰),而沉积物比鱼体具有更加偏负的δ~(202)Hg和趋近于0值的Δ~(199)Hg(δ~(202)Hg:-1.48‰±0.38‰;Δ~(199)Hg:0.01‰±0.02‰).与以往的研究相比,小浪底水库鱼体内汞同位素特征与淡水水库区域鱼体中类似,而Δ~(199)Hg/Δ~(201)Hg的比值为1.22,表明小浪底水库鱼体内汞的非质量分馏主要是甲基汞的光化学降解产生的;沉积物的同位素特征表明其受到了人为源排放的影响.鱼体内δ15N数据表明在营养转移的过程中会发生质量分馏,但不会发生非质量分馏.  相似文献   

3.
随着珠江河口地区经济的快速发展,红树林生态环境受人类的影响日益严重。红树林湿地内的重金属污染物具有不能被生物降解、残留时间长、容易通过食物链富集等特征而受到越来越多的关注。选取深圳福田红树林和宝安红树林湿地,采集0~30 cm深度的表层沉积物,并以沉积物的基本理化指标(TOC、TN、p H)以及重金属(Cd、Cu,、Zn和Pb)为研究对象,探讨深圳典型红树林湿地的重金属积累和历史污染特征。结果表明:(1)与宝安红树林湿地相比,福田红树林湿地沉积物存在较高的TOC含量(福田TOC 4.52%~7.74%宝安TOC 2.14%~3.21%)和较低的TN含量(福田TN 0.35‰~0.55‰宝安TN 0.77‰~1.44‰);(2)福田红树林湿地沉积物中Cd、Cu、Zn和Pb的质量分数分别为5.10~6.65μg·g~(-1)、75.38~92.37μg·g~(-1)、303.05~429.93μg·g~(-1)和303.05~429.93μg·g~(-1),低于宝安红树林湿地,体现出保护区管理模式对污染管控的优势;(3)聚类分析和主成分分析表明,福田红树林重金属污染主要受工业和生活污水污染共同影响,宝安红树林主要为工业污染;(4)宝安红树林湿地沉积物重金属的地质累积指数(I_(geo))值和潜在生态危害指数(RI)值均高于福田红树林湿地,表明宝安红树林湿地的重金属的生态风险高于福田红树林。福田红树林湿地中Cd的I_(geo)和E_r~i分别为4.09~4.47和765.00~997.50,存在严重的生态风险。宝安红树林湿地中的Cd和Cu均存在严重的生态风险,其中Cd的I_(geo)和E_r~i分别为4.66~4.95和1 000.00~1 392.50,Cu的I_(geo)和E_r~i分别为6.71~6.85和784.20~862.43。因此,深圳福田和宝安红树林湿地由于受到不同的人类活动的影响而具有不同的重金属污染特征。研究结果可为深圳红树林湿地重金属污染控制和修复提供科学支撑。  相似文献   

4.
为缓解河口水域氮污染,对珠江河口不同湿地类型沉积物中的硝化细菌进行分离和盐度驯化,筛选出耐盐且硝化效率较高的菌株,通过菌株形态、生理生化和16Sr DNA基因分析对其进行鉴定,分别测定菌株在不同温度、pH、接种量和不同沉积物质量下的硝化效率。将硝化细菌与湿地耐盐植物芦苇(Phragmites australis)组合,研究硝化细菌、芦苇及两者组合系统在河口不同盐分和水动力条件下的硝化特性,以期为河口水域咸潮入侵时和入侵后氮污染的修复奠定基础。结果表明,3种典型湿地芦苇、互花米草(Spartina alterniflora)和光滩沉积物中硝化细菌的数量分别为2.1×10~5、1.8×10~5和0.5×10~5cells·g~(-1),净硝化速率分别为(0.41±0.02)、(0.35±0.03)、(0.12±0.02)mg·m~(-2)·d~(-1),硝化作用强度:芦苇区互花米草区光滩区。从芦苇湿地沉积物中筛选出1株高效硝化细菌L4,经鉴定,为亚硝化单胞菌属(Nitrosomonas communi)。菌株L4在盐度从5‰上升至20‰寸,硝化效率从80.5%下降至7.7%。经盐度驯化,菌株L4在20‰内的盐度环境下硝化效率可达到75.6%,其最适pH和温度分别为7.2和30℃,最适接种量为1 g·L~(-1)湿菌,沉积物对菌株L4硝化作用影响不大。模拟不同盐分和水动力条件的河口环境,菌株L4-芦苇组合系统在0‰~20‰的盐度环境下均表现出稳定的硝化效率,7 d硝化效率达到80.9%~88.91%;在盐度分别为30‰和40‰时,硝化效率分别为52.13%和3 1.89%,均大于芦苇和菌株L4单独系统的硝化效率之和,表现出一定的协同性。菌株L4-芦苇组合系统在未曝气时硝化效率可达到67.5%,在1.5 L.h~(-1)的曝气量时硝化效率最高达到81.5%,可见水动力的富氧作用可促进硝化作用的进行。菌株L4和芦苇的协同作用在河口氮污染修复中具有良好的应用潜力。  相似文献   

5.
以洱海入湖河流永安江为研究对象,利用硝酸盐δ15N和δ18O双同位素技术对永安江水体的硝酸盐氮来源进行识别。在永安江沿程共布置9个监测点,分析硝酸盐的污染特征,并利用离子交换树脂法对水样进行预处理后测试硝酸盐δ15N和δ1 8O。结果表明,永安江硝酸盐氮源负荷占永安江总氮源污染的50%左右,各采样点ρ(硝酸盐)为0.07~5.22 mg·L-1,均值为1.00~2.39 mg·L-1。经同位素测试,各采样点δ15N-NO3-均值为6.12‰~13.88‰,δ18O-NO3-均值为8.24‰~11.72‰;永安江河水中硝酸盐主要来自于流域内化学肥料、牲畜粪便、生活污水和土壤有机氮硝化;利用Iso Source混合模型对4种形态的硝酸盐来源进行定量分析,发现化学肥料占37.3%,牲畜粪便占34.6%,村落污水占18.2%,土壤有机氮占9.9%。利用Iso Source混合模型可为河流硝酸盐来源定量研究提供新的研究思路,硝酸盐贡献比例与河流流经村落位置及土地利用类型有关。  相似文献   

6.
广州市大气典型羰基化合物碳同位素组成初探   总被引:1,自引:0,他引:1  
采用气相色谱/燃烧/同位素比值质谱(GC/C/IRMS)技术,通过2,4-二硝基苯肼(DNPH)衍生化方法,初步测定了广州市城区交通主干线大气中甲醛、乙醛和丙酮的碳同位素组成.结果表明,甲醛的δ13C值变化范围为-42.06‰--33.52‰,乙醛的δ13C值变化范围为-35.84‰--32.20‰,丙酮的δ13C值变化范围为-30.85‰--29.50‰;而且,白天相对于夜晚而言,甲醛、乙醛和丙酮的最大碳同位素分馏分别为6.65‰,3.27‰和0.75‰,碳同位素分馏上的差异表明它们在环境大气中不同化学活性上的差异.  相似文献   

7.
为探究滇池主要入湖河道的氮素来源及输移特征,研究于雨季对宝象河水系径流氮营养盐进行了系统监测,分析了宝象河径流过程中氮的浓度、赋存形态特征及其变化规律等环境过程,并对不同区位的氮来源进行了示踪.结果表明,干流总氮浓度从上至下呈现增长趋势,河源至中游地区以硝酸盐氮(NO_3~--N)为主,而下游则以氨氮(NH_4~+-N)为主.流域主要氮源总氮浓度从低到高依次为:雨水、村镇排污口、农田沟渠径流、城市排污口,其中农田沟渠径流以NO_3~--N为主,而其他三类则以NH_4~+-N为主.雨季宝象河流域各主要氮源的汇入是导致宝象河径流氮浓度及其赋存形态的变化的重要原因,不同氮源的氮赋存形态在一定程度上决定了对应受纳区河道径流氮赋存形态.干流水体δ~(15)N-NO_3~--N从河源至入湖口呈现先增后减的趋势,其变化范围是6.576‰—9.708‰.流域雨水、农田沟渠径流、村镇排污口和城市排污口等氮源δ~(15)N-NO_3~--N分别为3.389‰—5.619‰、6.681‰—19.623‰、5.031‰—9.278‰和5.497‰—7.02‰.降雨和土壤径流是河源氮素主要贡献源;农业源和村镇源是上游、中游地区氮素主要贡献源;宝象河下游除了农业源、村镇源外,城市源也是其主要贡献源.研究结果能为滇池流域氮素面源污染精确治理和调控提供依据.  相似文献   

8.
氮同位素控制下黄河及其主要支流硝酸盐来源分析   总被引:4,自引:0,他引:4  
选取黄河小浪底水库及以下干流和支流河水为主要研究对象,利用氮同位素识别河水潜在硝酸盐来源,结果表明,研究区黄河干流及支流沁河和伊洛河河水硝酸盐含量均值分别为(4.77±0.95)、(3.45±1.71)和(4.50±0.91) mg·L-1.研究区黄河干流河水δ15N-NO3-均值为(+3.2±4.5)‰,上游河水硝酸盐来源主要为土壤有机氮矿化,下游平原区河水硝酸盐来源包括土壤有机氮矿化以及化学肥料.沁河河水δ15N-NO3-均值为(+8.3±4.6)‰,丰水期河水硝酸盐来源包括大气降水、土壤有机氮矿化以及化学肥料;平水期河水硝酸盐受到生活污水和土壤有机氮矿化共同影响;枯水期沁河河水由于断流形成封闭水体,浮游植物和藻类生长以及反硝化作用是控制河水硝酸盐的重要因素.枯水期洛河和伊河河水δ15N-NO3-值分别为+ 10.9‰和+3.4‰,其中生活污水是洛河河水硝酸盐的重要来源,合成化学肥料是伊河河水硝酸盐的重要来源.  相似文献   

9.
选取云南石林县不同土壤类型、不同石漠化等级以及不同人为干扰方式影响下的7处典型的土壤剖面为研究对象,研究了剖面中氮同位素垂直分异及空间分异特征.结果表明,土壤中p H值为3.68—6.07,全部土壤剖面呈酸性,总有机碳(TOC)为0.58—29.25 g·kg~(-1),碳氮比(C/N)为1.33—14.70,δ~(15)N介于1.44‰—14.86‰,在随深度的垂直分异中,受剖面中腐殖质层和硝化反硝化反应的影响,土壤中稳定氮同位素呈现一定的规律性变化.在各个剖面之间的空间分异中,两种不同土壤类型下δ~(15)N值的分散程度均存在轻度石漠化剖面中度石漠化剖面强度石漠化剖面的规律.同时在受人为影响较小的红壤剖面δ~(15)N值大致呈现强度石漠化剖面中度石漠化剖面轻度石漠化剖面的规律.采样区内无论是石灰岩土壤剖面还是红壤剖面δ~(15)N值与土壤理化性质均无显著相关关系.  相似文献   

10.
苯酚及氯代苯酚化合物TiO2催化光致降解   总被引:26,自引:0,他引:26  
在载于玻璃反应器内壁的薄层TiO_2催化作用下,水溶液中苯酚、对氯苯酚、2,4-二氯苯酚和2,4,6-三氯苯酚的光致降解均遵守一级反应动力学.其一级反应表现速率常数k_(o b)为7.0×10~(-3)-2.8×10~(-2)min~(-1),其大小顺序为:苯酚<对氯苯酚<2,4-二氯苯酚<2,4,6-三氯苯酚.加入少量H_2O_2(1.9×10~(-2)mol·L~(-1))均能提高这些化合物的TiO_2催化光致降解速率(k’_(o b)=1.5×10~(-2)-3.3×10~(-2)min~(-1)).经一定时间光照后(λ≥345nm,1.5—4.5b)这些化合物几乎完全降解,光致降解率大于95%,COD去除率大于96%.  相似文献   

11.
叶片δ~(13)C值、养分含量等特征体现了植物为获取最大碳收获所采取的生存适应策略,同时δ~(13)C值还可以指示植物的长期水分利用效率,了解荒漠草原短花针植物的水分及资源利用策略有助于人们掌握其生长机制,对分析短花针茅应对干扰的生态对策有重要意义。采用稳定性碳同位素技术,通过测定荒漠草原短花针茅(Stipa breviflora)叶片稳定性同位素值(δ~(13)C),结合植物叶片碳(C)、氮(N)、碳氮比(C/N)、水分含量(LWC)等生理指标,探讨不同载畜率下短花针茅叶片的适应机理。结果表明,短花针茅叶片δ~(13)C值随放牧强度的增大而显著减小(P=0.041),其中对照处理为-26.8‰,轻度放牧处理为-27.2‰,中度和重度放牧处理分别为-27.4‰和-27.5‰,表明随着放牧强度的增大,植物的水分利用效率降低。随着放牧强度的增大,短花针茅叶片N质量分数增大(P=0.003),从对照到重度放牧处理依次为2.1%、2.3%、2.5%和2.7%;C质量分数减小,但不显著(P=0.076),从对照到重度放牧处理依次为46.3%、46.1%、46.1%和45.3%;C/N显著降低(P=0.004),对照到重度放牧处理依次为26.1%、20.7%、19.6%、18.5%,表明随着放牧干扰的增强,植物积累有机物质及资源利用能力下降。相关分析发现短花针茅叶片δ~(13)C值与N质量分数呈显著负相关(r=-0.690,P0.05),与C质量分数、C/N呈显著正相关(r=0.565,r=0.668;P0.01);叶片δ~(13)C值可指示植物有机物质的积累和资源利用能力。  相似文献   

12.
通过对莱州湾-龙口湾表层沉积物样品中总有机碳(TOC)、总氮(TN)、有机碳与总氮的比值(C/N)、稳定碳氮同位素(δ13C、δ15N)生物地球化学指标的测定,分析了该区域沉积物中有机质的特征和来源.结果显示,莱州湾表层沉积物中TOC含量为0.47%±0.40%,龙口湾TOC含量为0.82%±0.37%,TN含量相差不大,因此龙口湾沉积物有机质相对含量高于莱州湾.港口的建设使龙口湾内水体流速减慢,加上龙口湾入海河流较少,使得龙口湾沉积物平均粒径(19.40μm)远低于莱州湾(43.89μm),比较容易吸附有机质.莱州湾沉积物中δ13C值为-24.96‰—21.46‰,平均值为-23.63‰;龙口湾表层沉积物中δ13C值为-23.02‰—22.39‰,平均值为-22.73‰.由此看来,莱州湾沉积物中有机质主要来源于陆生C3植物和藻类,而龙口湾有机质大部分来源于藻类,少数来自陆生C3植物.根据经典的二元模式计算,龙口湾陆源有机质的贡献比例范围为23.15%—33.67%,平均值为28.84%,莱州湾陆源贡献比例范围为7.65%—65.97%,平均值为43.75%.莱州湾沿岸有众多河流入海,尤其是含沙量最多的黄河,给湾内带来大量的陆上有机质,而龙口湾入海河流较少,沉积物中的陆上有机质较少.  相似文献   

13.
本文研究了CF_2ClBr-O_3体系在253.7nm紫外光照下所引发的O(~1D)与CF_2ClBr的反应.O(~1D)与CF_2ClBr反应的最终产物为CF_2O,Cl_2,Br_2;实验中得到O(~1D)与CF_2ClBr的反应速率常数为1.01×10~(-10)cm~3·molecule~(-1)·s~(-1),并且对O(~3P)与CF_2ClBr的反应可能性以及 O(~1D)与CF_2ClBr的反应机理进行了讨论.  相似文献   

14.
本文介绍了低压离子色谱仪测定水样(井水、湖水、矿泉水、自来水)和酸雨中锂、钠、铵、钙、钾和镁离子的方法、欲测阳离子在阳离子交换柱上被分离,分别用1.4mmol·1~(-1)HNO_3和0.6mmol·1~(-1)乙二胺+1.2mmol·1~(-1)HNO_3溶液作流动相,流速为1.6ml·min~(-1).各离子的流分用电导检测.进样量为10μl时,Li~+,Na~+,NH_4~+,K~+,Ca~(2+)和Mg~(2+)离子的检出限(2倍噪音比),分别为0.020,0.050,0.100,0.250,2.5和1.0μg·ml~(-1).  相似文献   

15.
邢鑫  季宏兵 《环境化学》2012,31(6):803-813
分析了北京市北部水源地所在流域丰水期和枯水期的水化学特征和硫同位素变化.结果表明,研究区地表水pH值呈弱碱性,水化学组成以HCO3-和Ca2+为主,Mg2+和SO24-次之.通过对主离子组成的分析,发现研究区水化学特征的主要控制因素是岩石风化,其中绝大部分是受碳酸盐岩的影响.研究区内δ34S值在4.9‰—10.7‰之间,平均值为7.9‰,其中密云水库库区及潮河、白河δ34S平均值分别为8.7‰、6.0‰、8.2‰.研究区内SO24-离子浓度与δ34S值在一定程度上呈负相关,SO24-离子浓度十分集中,降水中的SO24-离子浓度很低,而δ34S值较高.根据质量守恒原理计算出硫元素来源于硫酸盐岩的溶解比例为30.72%—42.47%;来源于硫化物氧化的比例为21.74%—33.49%;来源于大气输入的比例为35.77%.  相似文献   

16.
以泥鳅鳍二倍体(DIMF)和三倍体(TRMF)细胞系为受试细胞,研究杀虫单对2种细胞系的毒性作用。采用噻唑蓝(MTT)法测得DIMF与TRMF 24 h半致死浓度分别为119.73 mg·L-1、146.26 mg·L~(-1)。DIMF的敏感性明显高于TRMF。经杀虫单处理的活体细胞表现为细胞伸长,空泡化和脱落并游离于培养基表面的现象。2种细胞系酶活力测定的结果显示:杀虫单浓度为0~100 mg·L~(-1)时,SOD和GST活力随着浓度的增加而增加,100~200 mg·L~(-1)浓度组酶活力逐渐降低;0~200 mg·L~(-1)时,ACh E活力与杀虫单浓度呈负相关,并且三倍体3种酶活力均高于二倍体。微核试验结果显示:50 mg·L~(-1)杀虫单就能对细胞核造成损伤并形成微核,微核率随杀虫单浓度增加而增加。当杀虫单浓度达到200 mg·L-1时,微核率出现最大值,DIMF和TRMF分别为3.3‰和3.7‰,2种细胞的测试结果无显著性差异(P0.05)。电镜观察结果显示:对照组DIMF和TRMF超微结构无明显差异;DIMF和TRMF病理变化情况相似:染色质凝集趋边,细胞核分解成多个,细胞内出现空泡和凋亡小体,表现出凋亡的特征。研究表明杀虫单的细胞毒性机制是通过改变细胞内酶活性从而诱导凋亡,不同倍性细胞系之间的差异主要与多倍体细胞体积大,胞内物质多,分裂快,生长旺盛等有关。  相似文献   

17.
水稻品种是调控CH4产生和排放的关键因素。关于水稻品种对稻田产生和排放CH4的稳定性碳同位素组成(δ13CH4)的影响研究鲜见报道。通过温室盆栽和室内培养试验并结合稳定性碳同位素方法,研究了持续淹水条件下4个水稻生育期镇稻624、农香98和中早33的土壤CH4产生潜力、土壤溶液CH4浓度、CH4排放通量及产生、排放CH4的δ13C值,为最终筛选优质高产且低CH4排放的水稻品种提供CH4排放相关过程及其稳定性碳同位素方面的参考数据。结果表明:在分蘖期和拔节期,镇稻624和农香98的土壤CH4产生潜力显著高于中早33,在灌浆期和成熟期显著小于后者(P0.05)。三者土壤CH4产生潜力、土壤溶液CH4浓度最高值和土壤Eh的最低值依次出现在拔节期(2.6μg·g-1·d-1,346.9μmol·L-1,-296 m V)、拔节期(3.2μg·g-1·d-1,425.9μmol·L-1,-316 m V)和灌浆期(2.4μg·g-1·d-1、435.2μmol·L-1,-308 m V)。各品种土壤CH4产生潜力均与相应土壤溶液中CH4浓度显著正相关(P0.01),且与土壤Eh显著负相关(P0.01)。镇稻624和农香98在分蘖盛期CH4排放通量最大(67.1和68.7 mg·m-2·h-1),中早33则在拔节期(58.5 mg·m-2·h-1)。各品种CH4季节排放总量依次为55.29、55.74和40.82 g·m-2,前二者无显著差异,显著高于中早33,这可能是镇稻624和农香98的土壤CH4产生潜力在分蘖期和拔节期显著大于中早33,而各品种CH4排放又相对集中在分蘖期和拔节期的缘故。相关分析表明,各生育期CH4排放通量与相应的土壤CH4产生潜力显著正相关(P0.01)。可见水稻品种通过影响土壤的CH4产生,进而影响稻田CH4的排放。镇稻624和中早33土壤产生CH4的δ13C值从约-67.0‰增至-55.5‰,农香98则先减后增,范围为-64.2‰~-52.9‰,这说明镇稻624和中早33的土壤CH4产生途径差异较小,而二者与农香98差异较大。各品种排放CH4的δ13C值均先减后增,分别为-67.6‰~-48.5‰、-73.0‰~-47.3‰和-60.9‰~-46.7‰,季节平均值依次为-52.7‰、-52.5‰和-54.8‰。总体上,水稻品种影响排放δ13CH4值的季节变化。  相似文献   

18.
土壤CO_2与土下岩溶作用密切相关。了解不同土地利用类型下土壤CO_2的时空变化特征及来源,将有助于准确揭示岩溶碳循环规律。2018年1—5月,在柏树湾和后沟2个岩溶泉域不同深度土壤中插入PVC管,并通过注射器抽取土壤CO_2样品,通过对比土壤CO_2浓度及其δ~(13)C的变化特征分析岩溶作用与土壤CO_2之间的关系,并对土壤CO_2的来源进行示踪。结果表明,(1)柏树湾土壤CO_2浓度(1 812—18 654μmol·mol~(-1))大于后沟(507—9 975μmol·mol~(-1))。2个泉域上覆土壤的δ~(13)C相近,但柏树湾和后沟土壤CO_2的δ~(13)C分别为-22.4‰—-17.03‰和-16.33‰—-11.45‰。土壤CO_2的δ~(13)C接近其上覆植被,说明上覆植被差异是造成柏树湾土壤CO_2浓度大于后沟的主要原因。(2)柏树湾土壤CO_2浓度最大值出现在4月,并在5月降低;后沟除20 cm处土壤CO_2浓度最大值出现在5月外,其他深度土壤CO_2浓度最大值也出现在4月,并且在3月和5月分别出现了降低的趋势。土壤CO_2浓度的时间变化受温度和降水共同影响,过多的降水量可能对土壤CO_2产生抑制作用。(3)在垂向变化上,1—3月柏树湾和后沟土壤CO_2浓度均未出现双向梯度,而是同非岩溶区一样,表现为随土壤深度的增加而增加。这可能是由于1—3月降水减少导致土壤含水量降低,从而限制了岩溶作用对底部土壤CO_2的消耗造成的。而随着降水增加,土下岩溶作用增强,促进了底部土壤CO_2的消耗,土壤CO_2浓度的垂向变化由单向梯度转为双向梯度。另外,各泉域不同深度土壤CO_2的δ~(13)C差异较小,并且具有相似的季节变化规律,证实H_2SO_4和HNO_3溶蚀碳酸盐岩产生的CO_2对土壤CO_2的影响较小。  相似文献   

19.
干旱区荒漠植物体内潜在水源差异及利用策略分析   总被引:1,自引:0,他引:1  
水作为干旱区重要的环境因素之一,是荒漠植物生长发育的主要限制因子,故在荒漠区开展植物体内潜在水源差异及水分利用策略分析对综合理解生态水文过程具有重要意义。通过对艾比湖流域不同生活型荒漠植物的木质部及潜在水源(凝结水、地下水、河水和土壤水(0-40、40-70、70-100、100-150 cm))的稳定同位素值(δ~(18)O)进行统计学分析,利用多源线性混合模型(IsoSource)分析各潜在水源对植物体所吸收利用水分来源的贡献比率,并比较各潜在水源之间δ~(18)O值。结果表明,(1)土壤水的δ~(18)O变化范围为(-6.292‰--3.995‰),并且δ~(18)O随着土壤深度的加深,不同土层间的δ~(18)O表现为逐渐偏负;乔灌木与草本的δ~(18)O差异显著,而乔木与灌木的δ~(18)O差异不显著。(2)不同生活型的植物在对水分来源上存在明显差异,乔木对水分的利用主要集中于单一地下水资源;灌木除较多利用地下水外,也多元的利用其它水源;芦苇(Phragmites australis)与盐生草(Halogeton glomeratus)主要利用地下水,其它草本植物将表层土壤水作为首要水源。(3)浅根系与中深根系植物在各水源利用方面,除对(100-150 cm)的土壤水的利用无显著差异外,对其它水源利用均存在极显著差异(P0.01)。在根系类型上表现出明显的垂直分布规律:中深根系植物将地下水作为第一水源,而浅根系植物主要利用表层土壤水(0-40 cm)。以上研究结果表明,干旱荒漠区,植物所需水分主要受生活型和根系类型影响,其中后者影响更甚。  相似文献   

20.
为明确椭圆小球藻对水体中Hg~(~(2+))光还原反应的影响,采用室内模拟实验,以不同波长紫外灯及氙灯(可见光)为光源,探讨不同丰度活、死椭圆小球藻在各光照条件下对Hg~(~(2+))光还原反应的影响及动力学特征.结果表明,当藻丰度为1×106cells·m L~(-1)时,在可见光照射下,活藻、死藻处理Hg0的释放量分别为3.733 ng、3.749 ng,Hg~(~(2+))的还原率分别为18.66%、18.75%;在紫外光(UV)照射下,活藻、死藻处理Hg0的释放量最高为2.312 ng、2.373 ng,Hg~(~(2+))的还原率最高为11.56%、11.86%.在可见光、UVA、UVB和黑暗条件下,当藻丰度为0 cells·m L~(-1)时,Hg~(~(2+))的还原率分别为21.45%、22.86%、26.75%、20.41%;随藻丰度的增加,Hg~(~(2+))的还原率逐渐下降;当藻丰度为10×106cells·m L~(-1)时,活藻处理Hg~(~(2+))的还原率分别降至17.70%、10.28%、9.962%、9.774%,死藻处理的降至18.15%、10.83%、10.77%、10.39%.可见,椭圆小球藻对Hg~(~(2+))的光还原反应起抑制作用,藻丰度越高抑制作用越强烈;可见光对含藻处理Hg~(~(2+))的光还原起主要作用,其次为紫外光.动力学研究表明,UV照射下椭圆小球藻对Hg~(~(2+))光还原反应可用Langmuir-Hinshelwood模型进行描述,反应速率常数k为(0. 6893—1.473)×10-4ng·L~(-1)·min-1,Langmuir吸附系数KL为(1.063—1.080)×10-2L·ng~(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号