首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the feeding and reproductive ecology of euphausiids (krill) in different ocean environments, lipid classes and individual lipid components of four different species of euphausiids from Northeast Pacific (temperate species) and Southern Ocean (Antarctic species) were analyzed in animals from multiple life stages and seasons. The dominant krill species in the Northeast Pacific Euphausia pacifica and Thysanoessa spinifera, were compared to the two major Antarctic species, Euphausia superba and E. crystallorophias. Analysis comprised total lipid and lipid classes together with individual fatty acid and sterol composition in adults, juveniles, and larvae. Antarctic krill had much higher lipid content than their temperate relatives (10–50 and 5–20% of dry mass for Antarctic and temperate species, respectively) with significant seasonal variations observed. Phospholipids were the dominant lipid class in both temperate krill species, while neutral storage lipids (wax esters and triacylglycerols for E. crystallorophias and E. superba, respectively) were the major lipid class in Antarctic krill and accounted for up to 40% of the total lipid content. Important fatty acids, specifically 16:0, 18:1ω9, 20:5ω3, and 22:6ω3, were detected in all four krill species, with minor differences between species and seasons. Detailed lipid profiles suggest that krill alter their lipid composition with life stage and season. In particular, larval Antarctic krill appear to utilize alternate food resources (i.e., sea-ice associated organisms) during austral winter in contrast to juveniles and adults (i.e., seston and copepods). Lipid dynamics in krill among krill in both systems appear closely linked to their life cycle and environmental conditions including food availability, and can provide a more complete comparative ecology of euphausiids in these environmentally distinct systems.  相似文献   

2.
The present study addresses the effect of maternal diet on hatching success and condition of embryos and larvae of Antarctic krill Euphausia superba. Lipid and fatty acid content and composition were determined in field and laboratory samples. Developmental stages analyzed in embryos included: multiple-cell, gastrula, and limb-bud stages. Larval stages analyzed included: nauplius I, nauplius II, and metanauplius. Laboratory-reared embryos were spawned by gravid females incubated under three feeding groups: (1) phytoplankton mixture, (2) phytoplankton mixture and minced clam, and (3) phytoplankton mixture, minced clam, and commercial larval food. Hatching success was highest in group 3 (100%), lowest in group 1 (0%), and highly variable in field samples (0–48%). Lipid decreased slightly in embryos during embryonic development, while large decreases in lipid were found during nauplius development. High levels of 18:2(n-6), 20:4(n-6), and 22:6(n-3) observed with group 3 samples coincided with high hatching success in krill embryos. The ratio of 22:6(n-3)/20:5(n-3) also correlated to hatching success of embryos. The fatty acid profile of embryos in group 3 was similar to that of the field-collected embryos, reflecting the contribution of the commercial larval food in the maternal diet. In our study, the maternal diet was found to influence the fatty acid composition of embryos and in turn affects the hatching success of krill. Specific polyunsaturated fatty acids appeared to play important roles in embryogenesis in krill.  相似文献   

3.
During austral summer of 1985 different developmental stages (CIII, CIV, CV, females, males) of the Antarctic copepod Euchaeta antarctica and females of Euchirella rostromagna were collected in the southeastern Weddell Sea to determine their lipid contents and compositions. For E. antarctica the analyses revealed a strong ontogenetic accumulation of lipids towards the older copepodids with highest lipid contents in late CV stages and adults. The females of E. rostromagna had moderate lipid levels. The most striking difference between these two species concerns their lipid class compositions. E. antarctica deposited predominantly wax esters, whereas in E. rostromagna the major lipid class consisted of triacylglycerols, an unusual storage lipid in polar marine copepods. Principal fatty acids in E. antarctica were the monounsaturates 18:1(n-9) and 16:1(n-7), especially in the lipid-rich stages, while the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), usually membrane lipids, dominated in the lipid-poor stages. The wax ester moieties in E. antarctica consisted almost entirely of 14:0 and 16:0 fatty alcohols. Major components in E. rostromagna were the fatty acids 18:1(n-9), 16:0, 20:5(n-3) and 22:6(n-3). The potential of fatty acids and alcohols as typical trophic markers is rendered largely insignificant in the two species due to catabolic processes.  相似文献   

4.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

5.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

6.
The phylogenetic relationships of the Antarctic krill Euphausia superba, the key species in the Antarctic food web, and other Antarctic and sub-Antarctic cuphausiids have been investigated using the 16S ribosomal mitochondrial gene. The phylogenetic reconstructions indicated that the Antarctic species form a monophyletic clade separated by the non-Antarctic species. The results revealed a large genetic divergence between the Antarctic (E. superba and E. crystallorophias) and sub-Antarctic species (E. vallentini). The time of separation between these species, estimated from the molecular data, is around 20 million years ago, which is comparable with the geological time of the formation of a circum-Antarctic water circulation and the Antarctic Polar Frontal Zone. The euphausiid molecular phylogeny therefore represents evidence for vicariant speciation.  相似文献   

7.
Freshly caught male and female Euphausia superba from the same swarm exhibited different rates of mortality subsequent to capture. Mortality was significantly higher for reproductive males (100%, n=68) than for females (3%, n=186) within the first 3 d of capture. Total lipid and triacylglycerol levels in male, female and juvenile Euphausia superba were analysed and compared. All reproductive male krill analysed from this swarm had low lipid levels (1 to 3% dry weight) with negligible triacylglycerol stores (0 to 2% of total lipid). Somatic lipid stores in female and juvenile krill ranged from 8 to 30% of which up to 40% was triacylglycerol. The levels of algal sterols in the digestive gland of males, females and juveniles indicate that all krill had been feeding recently. An analysis of the sex ratio of krill catches derived from data collected over seven summers from the Prydz Bay region showed a decrease in the proportion of males with increasing size. There was a sharp decline in numbers of male krill once they attained a length of 51 to 55 mm. Low lipid levels in redroductive male krill may be due to reproductive costs. The resulting low storage-lipid levels are accompanied by high mortality in male krill.  相似文献   

8.
Ecological and physiological studies focused on dietary preferences, lipid biochemistry and energetics within the three Antarctic chaetognaths Eukrohnia hamata, E. bathypelagica and E. bathyantarctica from meso- and bathypelagic depths. Eukrohnia hamata and E. bathypelagica respired 0.15 μL O2 mg dry mass (DM)−1 h−1, which translates to an average metabolic loss of only <1.1% of body carbon per day. Lipid storage was not substantial in E. bathypelagica (mean 11.5 ± 6.5% DM) and E. bathyantarctica (mean 15.4 ± 4.1% DM) during summer and winter, suggesting year-round feeding of these predators mainly on copepods. In E. bathypelagica, total fatty acids were dominated by the fatty acids 16:0, 20:5(n-3) and 22:6(n-3) and in E. bathyantarctica also by 18:1(n-9), a fatty acid usually found in storage lipids. Only the latter species was characterized by significant amounts of wax esters, consisting largely of the common fatty alcohols 16:0, 20:1(n-9) and the unusual fatty alcohol isomer 22:1(n-9).  相似文献   

9.
The fatty acids of 3 samples of Euphausia superba, 7 samples of E. crystallorophias, and 12 samples of phytoplankton collected in the Ross Sea, Antarctica, during Eltanin Cruise 51 were examined. The fatty acid profiles of the samples of E. superba resembled each other closely. The fatty acid profiles of the E. crystallorophias samples were also similar to each other but different quantitatively from those of E. superba. Phytoplankton fatty acid patterns varied with the geographical location and species composition of the samples. The fatty acids of euphausiids were compared to those of the phytoplankton from the corresponding locations. Rather similar fatty acid patterns in phytoplankton and E. superba corroborate the herbivorous nature of this euphausiid. On the other hand, phytoplankton and E. crystallorophias showed quite different fatty acid patterns. The differences were mostly due to the presence of waxes among the lipids of E. crystallorophias. It is not clear whether these waxes are of dietary origin or are synthesized endogenously.  相似文献   

10.
Polonium-210 and lead-210 in Antarctic marine biota and sea water   总被引:1,自引:0,他引:1  
Concentrations of the naturally-ocurring radionuclides 210Po and 210Pb were measured in krill (Euphausia superba), mesozooplankton, phytoplankton and sea water collected during the South African SIBEX cruise to the Antarctic in autumn 1984. The data reported constitute the first substantial measurements on 210Po and 210Pb in such samples in the Antarctic Ocean. The concentrations of 210Po in mesozooplankton and phytoplankton are unexceptional in comparison with those from other oceans. The SIBEX E. superba, however, have higher levels of 210Po than usually found in euphausiids. The 210Po data, combined with reasonable estimates of biological quantitites such as the fractional assimilation, are used to obtain information about the diet of E. superba. It is suggested that the higher 210Po in the SIBEX E. superba reflects a change from an almost entirely phytoplanktonic diet in summer to a more omnivorous diet as winter approaches. The data show that there are allometric relationships between the 210Po content of euphausiids and animal size; these are discussed briefly. The limited sea-water data presented are characterized by unusually high 210Po:210Pb activity ratios and need further investigation.  相似文献   

11.
The fatty-acid composition of lipids from ovulated eggs of wild and cultured turbot was investigated in order to estimate the nutritional requirements during embryonic and early larval development. Lipid comprised 13.8±0.5% (n=5) and 13.2±0.7% (n=7) of the egg dry weight in wild and cultured turbot, respectively. Polyunsaturated fatty acids (PUFA) of the (n-3) series accounted for 39% of total fatty acids in total lipid of both wild and cultured fish. The predominant (n-3) FUFA was docosahexaenoic acid (22:6 n-3), which also was the most abundant fatty acid in turbot eggs and comprised 24 and 23% of the total egg fatty acids in wild and cultured fish, respectively. Phospholipids, triacylglycerols and cholesterol-wax esters of turbot eggs all exhibited a specific fatty-acid profile distinctly different from that of total lipid. The general pattern of the fatty-acid distribution in lipids of eggs from wild and cultured turbot was similar, but the relative amount of 18:2(n-6) was considerably higher and 20:1(n-9) slightly higher in cultured fish. These differences were extended to all lipid classes and probably reflect the dietary intake of certain vegetable and marine fish oils. Calculations based on light microscopical studies showed that 55 to 60% of the total lipids in cultured turbot eggs are confined to the oil globule. The size of the oil globule remained constant during embryogenesis, and a reduction in size occurred first after hatching and mainly after yolk depletion. This implies that the total amount of lipids utilised during the embryonic development is considerably less than the total lipids present in ovulated turbot eggs. Comparison of the fatty-acid composition of total lipids from eggs and vitellogenin of wild turbot reveals that egg lipids contained a lower level of saturated and a higher level of monounsaturated fatty acids. Eggs also contained wax esters, which were not detected in vitellogenin, suggesting that vitellogenin is not the only source of lipids for turbot eggs.  相似文献   

12.
The lipid class composition and the fatty acid composition of total lipids of the cysts, newly hatched nauplii and 24-h-old metanauplii of a Spanish parthenogenetic diploid strain ofArtemia sp. were studied. Substantial differences in the total lipid level occurred among these stages, with a marked increase from the cyst to the nauplii being followed by a decrease in the metanaupliar stages. This variation affected the absolute levels (mg/g dry wt) of the total lipid classes and individual fatty acids, although the percent composition of the fatty acids in total lipid was essentially unchanged. An exception occurred during hatching in that the percentages of 16:0 and 16:1n-7 in total lipid decreased whereas that of 20: 5n-3 increased. The lipid classes showed higher variation than the fatty acids both in absolute and in relative terms, and in particular, the ratio of phosphatidylcholine:phosphatidylethanolamine decreased progressively from cysts to nauplii and metanauplii. The implications of these findings for the use ofArtemia sp. as a larval feed in aquaculture are considered.  相似文献   

13.
Changes in biochemical composition, lipid class and fatty acid contents were studied in the ovaries and midgut glands of the fiddler crabs Uca tangeri Eydoux during maturation. Wild females were caught during spring and early summer of 1992 in the Bay of Cádiz (southwest Spain), near the mouth of the San Pedro river. Protein and total lipid contents in the ovaries increased significantly from Stages III to IV, at the expense of total carbohydrate, which showed a large decrease during the same period. In the midgut gland, the protein content did not present any significant variation, whereas total lipids and total carbohydrates presented opposite up and down trends during maturation. In the ovary, total polar lipids increased significantly during the final phase of maturation (Stages III to IV), mainly due to the significant contribution of the phosphatidylcholine and phosphatidylethanolamine fractions. In contrast, total neutral lipids showed an upward trend throughout the whole maturation period, mainly due to significant increases of the triacylglycerol fraction. In the midgut gland, total polar lipids (mainly phosphatidylcholine) and total neutral lipids (mainly triacylglycerol) presented significant decreases from Stages II to III, the phase which preceded major increases in both polar and neutral lipids in the ovaries. Cholesterol content did not vary during maturation in either organ, in the ovary or midgut gland. Major fatty acids in the ovaries [16:0, 16:1 (n-7), 18:1 (n-9), 18:1 (n-7), 18:2 (n-6), 18:3 (n-3), 20:4 (n-6), 20:5 (n-3) and 22:6 (n-3)] did, however, accumulate significantly at later stages of maturation. It is noteworthy that arachidonic acid [20:4 (n-6)] content remained constant during all stages of maturation but decreased significantly in total polar lipids in the later phases of maturation. In contrast, eicosapentaenoic acid [20:5 (n-3)] increased significantly in all lipid fractions in the later stages, and docosahexaenoic acid [22:6 (n-3)] remained constant in the polar lipids and increased during later stages in the triacylglycerol fraction. Major fatty acids in the midgut gland lipids showed significant decreases from Stages II to III, just before the final period of maturation.  相似文献   

14.
The effect of different light regimes on the development of sexual maturity and body composition (carbon, nitrogen, lipid and protein) of Antarctic krill, Euphausia superba, was studied over 12 weeks under laboratory conditions. Krill were exposed to light-cycle regimes of variable intensity to simulate Southern Ocean summer, autumn and winter conditions, respectively using: (1) continuous light (LL; 200 lux max), (2) 12-h light and 12-h darkness (LD 12:12; 50 lux max), and (3) continuous darkness (DD). The sexual maturity of female and male krill exposed to LL and LD 12:12 showed an accelerated succession of external maturity stages during the experimental period, while krill exposed to continuous darkness showed no changes in external maturity during the course of the study. Changes in the maturity development of krill between the different light regimes are reflected in changes in body composition. Krill exposed to LL and LD 12:12 showed an increase in lipid utilization, indicating that the development of external maturation may be fuelled preferentially by lipid reserves. In contrast, values of total lipid content of krill held under continuous darkness indicated an unchanged lipid catabolism during the course of the study. Thus, the maturity development of krill was affected either directly or indirectly by the different simulated light conditions. Based on these results, and observations on the effects of simulated light regimes on feeding and metabolic rates of krill available from a previous study, we suggest that the Antarctic light regime is an essential cue governing the seasonal cycle of krill physiology and maturity, and highlight the importance of this environmental factor in the life history of krill.  相似文献   

15.
Concentrations of water, ash, protein, chitin, lipid, calcium, magnesium, sodium, potassium, strontium and copper were measured in individuals from a laboratory population of Antarctic krill, Euphausia superba Dana, over the course of a moult cycle. Significant changes in all variables were encountered. Total ash, lipid, calcium, magnesium and strontium all increased in concentration following moulting. Water, protein and copper concentrations all decreased following ecdysis and increased again towards the end of the moult cycle. The major ions sodium and potassium fluctuated around mean levels. Cast moults of E. superba were shown to be a drain on the ionic load of the krill, and the losses inherent in exuviation could account for much of the variation observed during the moult cycle.  相似文献   

16.
Antarctic fishes contain large quantities of lipid in adipose tissue, blood and oxidative muscle. In this study, the fatty acyl compositions of free fatty acids (FFA) and triacylglycerol (TAG) in serum, adipose tissue and oxidative muscle were determined in two species of Antarctic fishes, Trematomus newnesi Boulenger, 1902, and Notothenia gibberifrons Lönnberg, 1905, collected off the Antarctic Peninsula in February and March 1987. Total lipid contents of serum and oxidative muscle in each species also were measured. T. newnesi, a mesopelagic species, has significantly more lipid in the serum than N. gibberifrons, a demersal species (17.6±2.4 and 10.4±1.0 mg lipid g-1 serum, respectively). The oxidative muscle of T. newnesi also contains more lipid than does that of N. gibberifrons (12.5 and 9.3% by dry weight, respectively). Fatty acids comprising greater than 5% of one or more of the lipid pools assayed in both species include 14:0, 16:0, 16:1, 16:2, 18:0, 18:1, 20:5 and 22:6. The percentages of 16:1 were lower (p<0.05) in oxidative muscle FFA than in all other assayed lipid pools in both species, suggesting a catabolic preference for some monoenes in oxidative muscle of these fishes. The percentage of 14:0 was two-to three-fold higher in adipose tissue TAG than in all other lipid pools in both species. Differences in fatty acid compositions between lipid pools indicate than proteins involved in the mobilization, transport or catabolism of fatty acids exhibit differential recognition of fatty acids in T. newnesi and N. gibberifrons.  相似文献   

17.
The fatty acid and alcohol composition of the pelagic amphipod, Themisto libellula, was monitored during the 5 first months of its life cycle (4–20 mm length) in an Arctic fjord, Kongsfjorden, Svalbard. Fatty acids of the three major lipid classes, polar lipids (PL), triacylglycerol (TAG), and wax esters (WE), were analyzed to highlight ontogenic changes in their diet and metabolism. The PL composition of T. libellula did not show any strong variations along their growth except during the first month where an important increase of 20:5(n-3) (EPA) and 22:6(n-3) (DHA) was observed. The TAG composition revealed a clear gradient corresponding to a diet shift from omnivorous juveniles toward carnivorous sub-adults and adults. Indeed, fatty acid trophic markers of diatoms were dominant in the juveniles, whereas 20:1(n-9) and 22:1(n-11), the Calanus sp. trophic markers, overwhelmed in the older stages. The WE composition highlighted the same general trend, however, differences were found with the TAG and are discussed as a result of differences in turnover rates and assimilation pathways between the two lipid classes.  相似文献   

18.
K. Reid 《Marine Biology》2001,138(1):57-62
 Antarctic krill Euphausia superba has a central role in the ecosystem of the Southern Ocean and knowledge of its growth rate is central to determining the factors influencing population dynamics. The length of Antarctic krill in the diet of Antarctic fur seals Arctocephalus gazella at South Georgia revealed a consistent increase in size between ca. 42 and ca. 54 mm over the period October–March, indicating growth rates much higher than predicted by existing models. Geographical variation in growth rate may result in 2-year-old krill at South Georgia attaining the same size as 3-year-old krill in the Antarctic Peninsula region. The effect of geographical variation in growth rate on the population structure of krill has important implications for comparing the fate of individual cohorts over large scales and in the interpretation of krill life-cycles. Received: 20 May 2000 / Accepted: 11 August 2000  相似文献   

19.
Antarctic krill,Euphausia superba, often exhibit abnormal behavior in laboratory aquaria, usually hovering in a stationary position, unresponsive to most external stimuli. In the austral summer of 1985–1986 at Palmer Station on Anvers Island, Antarctica, we provided laboratory conditions which inducedE. superba to school in large aquaria. Captive krill swam horizontally and exhibited the full spectrum of behaviors normally displayed while schooling at sea. Schooling krill avoided visually contrasting stimuli, with avoidance distances correlated with stimulus size. Schools responded in qualitatively different ways to presentations of food, chemical compounds, and abrupt increases in light intensity. We describe the conditions necessary for aquarium schooling and discuss the importance of an appropriate social environment for displays of escape, avoidance, and feeding behaviors and of positional preference within the school.  相似文献   

20.
Antarctic krill (Euphausia superba) occupy a key position in the Southern Ocean linking primary production to secondary consumers. While krill is a dominant grazer of phytoplankton, it also consumes heterotrophic prey and the relative importance of these two resources may differ with ontogeny. We used stable isotope analyses to evaluate body size-dependent trophic and habitat shifts in krill during the austral summer around the South Shetland Islands, Antarctica. We found evidence for an asymmetric, ontogenetic niche expansion with adults of both sexes having higher and more variable δ15N values but consistent δ13C values in comparison with juveniles. This result suggests that while phytoplankton likely remains an important life-long resource, krill in our study area expand their dietary niche to include higher trophic food sources as body size increases. The broader dietary niches observed in adults may help buffer them from recent climate-driven shifts in phytoplankton communities that negatively affect larval or juvenile krill that rely predominately on autotrophic resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号