首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Passenger Pigeon (Ectopistes migratorius) was a social breeder, and it has been suggested that the species experienced functional extinction, defined as a total reproductive failure, prior to its actual extinction in the early years of the 20th century. We applied a novel randomization test based on the relative times of the most recent egg‐ and skin‐specimen sightings (i.e., recorded date of specimen collection) to test for functional extinction. For a total of 6 eggs and 27 skins, the observed significance level was 0.38, which indicated that the species did not become functionally extinct. Thus, proposals to reverse its rapid decline in the late 19th century could have been successful.  相似文献   

2.
         下载免费PDF全文
All U.S. federal agencies administering environmental laws purport to practice adaptive management (AM), but little is known about how they actually implement this conservation tool. A gap between the theory and practice of AM is revealed in judicial decisions reviewing agency adaptive management plans. We analyzed all U.S. federal court opinions published through 1 January 2015 to identify the agency AM practices courts found most deficient. The shortcomings included lack of clear objectives and processes, monitoring thresholds, and defined actions triggered by thresholds. This trio of agency shortcuts around critical, iterative steps characterizes what we call AM‐lite. Passive AM differs from active AM in its relative lack of management interventions through experimental strategies. In contrast, AM‐lite is a distinctive form of passive AM that fails to provide for the iterative steps necessary to learn from management. Courts have developed a sophisticated understanding of AM and often offer instructive rather than merely critical opinions. The role of the judiciary is limited by agency discretion under U.S. administrative law. But courts have overturned some agency AM‐lite practices and insisted on more rigorous analyses to ensure that the promised benefits of structured learning and fine‐tuned management have a reasonable likelihood of occurring. Nonetheless, there remains a mismatch in U.S. administrative law between the flexibility demanded by adaptive management and the legal objectives of transparency, public participation, and finality.  相似文献   

3.
    
Biodiversity surrogates and indicators are commonly used in conservation management. The focal species approach (FSA) is one method for identifying biodiversity surrogates, and it is underpinned by the hypothesis that management aimed at a particular focal species will confer protection on co‐occurring species. This concept has been the subject of much debate, in part because the validity of the FSA has not been subject to detailed empirical assessment of the extent to which a given focal species actually co‐occurs with other species in an assemblage. To address this knowledge gap, we used large‐scale, long‐term data sets of temperate woodland birds to select focal species associated with threatening processes such as habitat isolation and loss of key vegetation attributes. We quantified co‐occurrence patterns among focal species, species in the wider bird assemblage, and species of conservation concern. Some, but not all, focal species were associated with high levels of species richness. One of our selected focal species was negatively associated with the occurrence of other species (i.e., it was an antisurrogate)—a previously undescribed property of nominated focal species. Furthermore, combinations of focal species were not associated with substantially elevated levels of bird species richness, relative to levels associated with individual species. Our results suggest that although there is some merit to the underpinning concept of the FSA, there is also a need to ensure that actions are sufficiently flexible because management tightly focused on a given focal species may not benefit some other species, including species of conservation concern, such of which might not occur in species‐rich assemblages. Una Evaluación Empírica de la Hipótesis de Especie Focal  相似文献   

4.
Large‐scale infrastructure projects commonly have large effects on the environment. The planned construction of the Nicaragua Canal will irreversibly alter the aquatic environment of Nicaragua in many ways. Two distinct drainage basins (San Juan and Punta Gorda) will be connected and numerous ecosystems will be altered. Considering the project's far‐reaching environmental effects, too few studies on biodiversity have been performed to date. This limits provision of robust environmental impact assessments. We explored the geographic distribution of taxonomic and genetic diversity of freshwater fish species (Poecilia spp., Amatitlania siquia, Hypsophrys nematopus, Brycon guatemalensis, and Roeboides bouchellei) across the Nicaragua Canal zone. We collected population samples in affected areas (San Juan, Punta Gorda, and Escondido drainage basins), investigated species composition of 2 drainage basins and performed genetic analyses (genetic diversity, analysis of molecular variance) based on mitochondrial cytb. Freshwater fish faunas differed substantially between drainage basins (Jaccard similarity = 0.33). Most populations from distinct drainage basins were genetically differentiated. Removing the geographic barrier between these basins will promote biotic homogenization and the loss of unique genetic diversity. We found species in areas where they were not known to exist, including an undescribed, highly distinct clade of live bearing fish (Poecilia). Our results indicate that the Nicaragua Canal likely will have strong impacts on Nicaragua's freshwater biodiversity. However, knowledge about the extent of these impacts is lacking, which highlights the need for more thorough investigations before the environment is altered irreversibly.  相似文献   

5.
    
Natural resource managers are often expected to achieve both environmental protection and economic development even when there are fundamental trade‐offs between these goals. Adaptive management provides a theoretical structure for program administrators to balance social priorities in the presence of trade‐offs and to improve conservation targeting. We used the case of Mexico's federal Payments for Hydrological Services program (PSAH) to illustrate the importance of adaptive management for improving program targeting. We documented adaptive elements of PSAH and corresponding changes in program eligibility and selection criteria. To evaluate whether these changes resulted in enrollment of lands of high environmental and social priority, we compared the environmental and social characteristics of the areas enrolled in the program with the characteristics of all forested areas in Mexico, all areas eligible for the program, and all areas submitted for application to the program. The program successfully enrolled areas of both high ecological and social priority, and over time, adaptive changes in the program's criteria for eligibility and selection led to increased enrollment of land scoring high on both dimensions. Three factors facilitated adaptive management in Mexico and are likely to be generally important for conservation managers: a supportive political environment, including financial backing and encouragement to experiment from the federal government; availability of relatively good social and environmental data; and active participation in the review process by stakeholders and outside evaluators. Mejorando los Objetivos Ambiental y Social Mediante el Manejo Adaptativo en el Programa de Pagos por Servicios Hidrológicos en México  相似文献   

6.
Abstract: The tropical Andes harbor an extraordinarily varied concentration of species in a landscape under increasing pressure from human activities. Conservation of the region's native plants and animals has received considerable international attention, but the focus has been on terrestrial biota. The conservation of freshwater fauna, particularly the conservation of fishes, has not been emphasized. Tropical Andean fishes are among the most understudied vertebrates in the world. We estimate that between 400 and 600 fish species inhabit the diverse aquatic environments in the region. Nearly 40% of these species are endemic. Tropical Andean fishes are vulnerable to ongoing environmental changes related to deforestation, water withdrawals, water pollution, species introductions, and hydropower development. Additionally, their distributions and population dynamics may be affected by hydrologic alterations and warmer water temperatures associated with projected climate change. Presently, at least three species are considered extinct, some populations are endangered, and some species are likely to decline or disappear. The long‐term persistence of tropical Andean fishes will depend on greater consideration of freshwater systems in regional conservation initiatives.  相似文献   

7.
         下载免费PDF全文
Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost‐effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape‐scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species‐rich plantings. We investigated whether it is possible to apply a complementarity‐based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity‐based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species‐richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species‐richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site‐scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.  相似文献   

8.
         下载免费PDF全文
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light‐level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species‐level migratory connectivity networks for this declining songbird by combining our tracking results with range‐wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one‐third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88–93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole. Conectividad de Sitios de Reproducción, Invierno y Migración del Zorzal con Base en Rastreo de Cobertura Amplia  相似文献   

9.
    
Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade‐tree diversity and shade‐tree carbon stocks in 14 plots of a 35‐ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long‐term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. Interacciones entre el Secuestro de Carbono y la Diversidad de Árboles de Sombra en una Cooperativa de Café de Pequeños Agricultores en El Salvador  相似文献   

10.
11.
         下载免费PDF全文
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   

12.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

13.
Abstract: Collisions of birds with power transmission and distribution lines have been documented for many species, and cause millions of casualties worldwide. Attempts to reduce mortality from such collisions include placing bird flight diverters (i.e., wire markers in the form of, e.g., spirals, swivels, plates, or spheres) on static and some electrified wires to increase their visibility. Although studies of the effectiveness of such devices have yielded contradictory results, the implementation of flight diverters is increasing rapidly. We reviewed the results of studies in which transmission or distribution wires were marked and conducted a meta‐analysis to examine the effectiveness of flight diverters in reducing bird mortality. We included in our meta‐analysis all studies in which researchers searched for carcasses of birds killed by a collision with wires. In those studies that also included data on flight frequency, we examined 8 covariates of effectiveness: source of data, study design, alternate design (if marked and unmarked spans were alternated in the same line), periodicity of searches for carcasses, width of the search transect, and number of species, lines, and stretches of wire searched. The presence of flight diverters was associated with a decrease in bird collisions. At unmarked lines, there were 0.21 deaths/1000 birds (n =339,830) that flew among lines or over lines. At marked lines, the mortality rate was 78% lower (n =1,060,746). Only the number of species studied had a significant influence on effect size; this was larger in studies that addressed more species. When comparing mortality at marked and unmarked lines, we recommend use of the same time intervals and habitats and standardizing the periodicity of carcass searches.  相似文献   

14.
    
Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high‐scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high‐quality rare species populations and natural community occurrences. High‐scoring sites captured significantly more of the biodiversity sites than expected by chance (p < 0.0001): 75% of the 414 target species, 49% of the 4592 target species locations, and 53% of the 2170 target community locations. Calcareous bedrock, coarse sand, and fine silt settings scored markedly lower for estimated resilience and had low levels of permanent land protection (average 7%). Because our method identifies—for every geophysical setting—sites that are the most likely to retain species and functions longer under a changing climate, it reveals natural strongholds for future conservation that would also capture substantial existing biodiversity and correct the bias in current secured lands.  相似文献   

15.
    
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

16.
17.
         下载免费PDF全文
To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large‐scale extinction processes must be identified. A promising approach is to link the red‐list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits can be used to detect the influence of anthropogenic ecosystem changes and conservation efforts on species, which allows for practical recommendations for conservation. We modeled the German Red List categories as an ordinal index of extinction risk of 1025 saproxylic beetles with a proportional‐odds linear mixed‐effects model for ordered categorical responses. In this model, we estimated fixed effects for intrinsic traits characterizing species biology, required resources, and distribution with phylogenetically correlated random intercepts. The model also allowed predictions of extinction risk for species with no red‐list category. Our model revealed a higher extinction risk for lowland and large species as well as for species that rely on wood of large diameter, broad‐leaved trees, or open canopy. These results mirror well the ecological degradation of European forests over the last centuries caused by modern forestry, that is the conversion of natural broad‐leaved forests to dense conifer‐dominated forests and the loss of old growth and dead wood. Therefore, conservation activities aimed at saproxylic beetles in all types of forests in Central and Western Europe should focus on lowlands, and habitat management of forest stands should aim at increasing the amount of dead wood of large diameter, dead wood of broad‐leaved trees, and dead wood in sunny areas.  相似文献   

18.
Habitat loss and fragmentation are causing widespread population declines, but identifying how and when to intervene remains challenging. Predicting where extirpations are likely to occur and implementing management actions before losses result may be more cost‐effective than trying to reestablish lost populations. Early indicators of pressure on populations could be used to make such predictions. Previous work conducted in 2009 and 2010 identified that the presence of Eastern Yellow Robins (Eopsaltria australis) in 42 sites in a fragmented region of eastern Australia was unrelated to woodland extent within 500 m of a site, but the robins’ heterophil:lymphocyte (H:L) ratios (an indicator of chronic stress) were elevated at sites with low levels of surrounding woodland. We resurveyed these 42 sites in 2013 and 2014 for robin presence to determine whether the H:L ratios obtained in 2009 and 2010 predicted the locations of extirpations and whether the previous pattern in H:L ratios was an early sign that woodland extent would become an important predictor of occupancy. We also surveyed for robins at 43 additional sites to determine whether current occupancy could be better predicted by landscape context at a larger scale, relevant to dispersal movements. At the original 42 sites, H:L ratios and extirpations were not related, although only 4 extirpations were observed. Woodland extent within 500 m had become a strong predictor of occupancy. Taken together, these results provide mixed evidence as to whether patterns of individual condition can reveal habitat relationships that become evident as local shifts in occupancy occur but that are not revealed by a single snapshot of species distribution. Across all 85 sites, woodland extent at scales relevant to dispersal (5 km) was not related to occurrence. We recommend that conservation actions focus on regenerating areas of habitat large enough to support robin territories rather than increasing connectivity within the landscape.  相似文献   

19.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   

20.
Abstract: Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500‐ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow‐pocket aspen plots. On each 1.5‐ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150‐m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow‐pocket aspen produced extensive regeneration of new shoots ( stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium‐diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow‐pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow‐pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow‐pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic‐level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号