首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Humic substances (HS) are widely used for diverse purposes. The effect of HS on the metal’s status in contaminated soils is contradictory. The aim of this work was to investigate the Cu migration in soils treated with HS. A model field experiment with the addition of Cu (1.243?mg?Cu/kg) and HS Extra® (potassium humate) was performed. The Cu addition resulted in acidification (by 0.7 pH) after 3 months. The major part of the added Cu remained in the upper 7-cm-thick soil layer; 4% reached the lower soil layer, while only 0.1% were removed beyond the profile. The addition of HS mitigated soil acidification increased the content of Cu bound to solid-phase organic substances and abruptly reduced the Cu activity in the soil liquid phase. Simultaneously, the HS addition increased the water-soluble organic substances (WSOS) by four times, including those in the hydrophilic and hydrophobic fractions, resulting in a twofold increase in the content of soluble Cu. Copper complexes with hydrophilic WSOS mainly reached lysimeters, and hydrophobic organic substances were absorbed by the soil. The HS addition to a slightly acidic soil can accelerate the migration of Cu to adjacent environments.  相似文献   

2.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

3.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

4.
本文作者主要研究了腐殖酸对聚乙烯吡咯烷酮包覆的纳米银颗粒(polyvinylpyrrolidone-coated AgNPs)毒性的影响,受试生物涵盖了水生系统不同的营养级别,包括藻类(Raphidocelis subcapitata)、水蚤类(Chydorus sphaericus)以及淡水鱼类(Danio rerio)。结果显示,腐殖酸可降低AgNPs对本研究中所有水生生物的毒性,并具有明显的剂量效应关系。原因为:1)腐殖酸使AgNPs表面带有更多负电荷,这阻碍了AgNPs与藻细胞的接触,使毒性降低;2)腐殖酸抑制了AgNPs中Ag+的溶出,而本研究显示自由Ag+的毒性高于团聚的纳米银颗粒。
精选自Zhuang Wang, Joris T.K. Quik, Lan Song, Evert-Jan Van Den Brandhof, Marja Wouterse and Willie J.G.M. Peijnenburg. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environmental Toxicology and Chemistry: Volume 34, Issue 6, pages 1239–1245, June 2015. DOI: 10.1002/etc.2936
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.2936/full
  相似文献   

5.
类腐殖质(humic-like substances, HULIS)是水溶性有机碳(WSOC)中具有吸光特性的重要组分,对空气质量、气候变化和人体健康均有重要影响.尽管目前对HULIS的研究很多,但不同方法分离机理不同,对于HULIS的分离与测定仍然缺乏统一的标准,针对HULIS分离方法的研究很少.固相萃取法(solid phase extraction, SPE)因其操作简单、分离效果较好而被广泛应用,但对于低浓度样品仍存在检出限较高、回收率较低的问题,且很少有人关注提纯过程中流程空白所包含的含碳组分及其吸光能力.本研究通过调整活化溶液(0.01 mol·L-1 HCl溶液+甲醇+2%NH3H2O/MeOH)与洗脱溶液(2%NH3H2O/MeOH)用量的比例对提纯方法进行优化.结果表明,应用优化后的方法对流程空白进行测量时,检出限(MDL)降低到0.035 mg·L-1以下,精密度RSD <5.41%(n=20),标准品回收率达到95%,在保证回收率的情况下减少了流程空白,提高了样品的精密度,使测定浓度较低的HULIS含量成为可能.为了探究生物质燃烧期间含碳组分的光学特性和来源特征,本研究对2017年10月6日至11月9日南京北郊秋季大气气溶胶样品进行采集.采样期间PM2.5的浓度为(87.9±43.7)μg·m-3,WSOC和类腐殖质碳(HULIS-C)的浓度分别为(4.2±2.3)μg·m-3和(3.6±2.0)μg·m-3,HULIS-C占WSOC的比例为47.3%,是WSOC中的重要组成部分.本研究还对HULIS在330—400 nm波段的吸光进行测定,使用Angstrom指数(absorption angstrom exponent,AAE)进行表征,得到采样期间AAE的值为2—7,说明HULIS污染主要来自二次转化.后向轨迹结果表明,重污染期间污染物来源为本地生物质燃烧和区域或者长距离气团的输送.  相似文献   

6.
Biological treatment of landfill leachate is challenging due to the presence of complex compounds. Here, we treated an old landfill leachate using a membrane bioreactor under the following conditions: 24 h for hydraulic retention, 65 days of sludge retention and an average organic load rate of 1.71 ± 0.16 g/L/day. We observed a high removal of ammonia, phosphorous and some metals. However, removal of organic carbon was incomplete. Despite a major removal of suspended solids, hydrophobic and volatile hydrophilic compounds, high concentration of fulvic acid and hydrophilic contaminants was found in the effluent. Overally, we demonstrate that the presence of humic substances in the effluent is associated with the detection of arsenic, copper and chromium and di(2-ethylhexyl) phthalate.  相似文献   

7.
• Light irradiation increased the concentration of free radicals on HS. • The increased spin densities on HS readily returned back to the original value. • The “unstable” free radicals induced the formation of reactive radical species. • Reactive radicals’ concentration correlated strongly with EPFRs’ concentration. Environmentally persistent free radicals (EPFRs) in humic substances play an essential role in soil geochemical processes. Light is known to induce EPFRs formation for dissolved organic matter in aquatic environments; however, the impacts of light irradiation on the variation of EPFRs in soil humic substances remain unclear. In this study, humic acid, fulvic acid, and humin were extracted from peat soil and then in situ irradiated using simulated sunlight. Electron paramagnetic resonance spectroscopy results showed that with the increasing irradiation time, the spin densities and g-factors of humic substances rapidly increased during the initial 20 min and then gradually reached a plateau. After irradiation for 2h, the maximum spin density levels were up to 1.63 × 1017, 2.06 × 1017, and 1.77 × 1017 spins/g for the humic acid, fulvic acid, and humin, respectively. And the superoxide radicals increased to 1.05 × 1014–1.46 × 1014 spins/g while the alkyl radicals increased to 0.47 × 1014–1.76 × 1014 spins/g. The light-induced EPFRs were relatively unstable and readily returned back to their original state under dark and oxic conditions. Significant positive correlations were observed between the concentrations of EPFRs and reactive radical species (R2 = 0.65–0.98, p<0.05), which suggested that the newly produced EPFRs contributed to the formation of reactive radical species. Our findings indicate that under the irradiation humic substances are likely to be more toxic and reactive in soil due to the formation of EPFRs.  相似文献   

8.
Organic compounds such as chlorobenzene cannot be effectively decomposed with currently available biological and chemical treatment methods. Preliminary studies show that nano-scale zero-valent iron particles irradiated by microwave is effective in decomposing chemically refractive organic compounds such as chlorobenzene. In this study, microwave is applied to enhance chlorobenzene removal using micron-scale iron particles and nano-scale zero-valent iron particles suspended in the chlorobenzene solution as the dielectric media. The results show that better chlorobenzene removal can be achieved when the chlorobenzene solution is irradiated with 250 W microwave for 150 s than without microwave irradiation. The microwave radiation increases iron reaction rate and surface activity, thus enhancing the chlorobenzene removal. The microwave-induced iron particles cause the chlorobenzene activation energy to drop 34.0% for micron-scale iron and 16.1% for nano-scale zero-valent iron. They can remove 13.6 times more chlorobenzene for micro iron, and 3.6 times more chlorobenzene for nano iron. We have demonstrated that the microwave-induced nano-scale iron particles are effective in treating toxic organic substances as demonstrated in this laboratory study.  相似文献   

9.
The biologic treatment of the dewatering effluent from thermally treated sludge is difficult due to the high concentration of refractory humic substances. On the other hand, humic substances are an important source of organic fertilizer. In this study, a novel process using ferric coagulant was developed to recover humic substances from dewatering effluent for use as an organic fertilizer. When ferric coagulant was applied to raw dewatering effluent, up to 70% of humic substances were enmeshed by hydrolyzed ferric ions at an optimum pH of 4.5. The proper mass ratio of iron ions to humic substances was 0.6. In the recovered material, humic substances accounted for 24.2% of the total dry solids, and the amount of phosphorus (equivalent phosphorus pentoxide) was 6.2%. Heavy metals and other components all met the legal requirements for organic fertilizer. When the recovered material was applied to soybeans, the germination and growth of the seeds was significantly improved.  相似文献   

10.
The photochemical degradation of bisphenol A (BPA) was studied in the presence of natural humic substances from different origins under simulated solar irradiation. BPA underwent insignificant direct photolysis in neutral water, but rapid photosensitized degradation in four humic substances solutions via pseudo-first-order reaction occurred. The photo-degradation rate of BPA was insensitive to the different initial BPA concentrations and was inhibited in aerated solution compared with the deoxygenated medium. The reactive oxygen species (ROS) such as ·OH and 1O2 produced from excitation of humic substances under irradiation was determined from the quenching kinetic experiment using molecular probe. The five main intermediate photoproducts of BPA in Nordic lake fulvic acid (NOFA) were tentatively identified using gas chromatography/mass spectrometer (GC/MS). Based on the identification of ROS and the analysis of photoproduct formation, the possible phototransformation pathways of BPA were proposed, involving the direct photolysis due to the energy transfer from the triplet state humic substance (3HS*) to BPA molecules and hydroxyl radical addition and oxidation as well.  相似文献   

11.
The results of the emissions from combustion processes and/or from fire accidents show the risk to man and his environment and thus the need for strict legislation and critical analysis of unwanted compounds. These substances or their thermolysis products are often due to incomplete combustion or may result from the interaction of various substances.

In the following we report the formation of octachlorostyrene (OCS) and of high‐toxic substances such as polybrominated dioxins (PBrDD's), dibenzofurans (PBrDF's) by the combustion.

In order to determine a possible source of the non‐manufactured compound OCS, we conducted several model experiments in a combustion chamber at various temperatures from 400 °C to 800 °C. The thermolysis of chlorinated solvents like chloroform or of chlorinated aromatice like pentachlorobenzene produced—among other chlorinated substances—OCS as one of the major products.

Analogous combustion experiments with polyester plastics containing decabromodiphenylether as flame retardant and antimony trioxide as Synergist led to PBrDD's and PBrDF's. Here antimony trioxide seems to play an important role because in absence of this oxide, PBrDD's and PBrDF's were not found in our experimental conditions.  相似文献   

12.
Aquatic macrophytes’ decomposition is a source of recalcitrant carbon in the long term contributing to humic substances (HS) formation. Understanding the influence of plant detritus quality and oxygen availability over molecular changes of these compounds provides ecological information related to their cycling. This study described the molecular variation of dissolved HS from Eichhornia azurea, Egeria najas, Oxycaryum cubense and Salvinia molesta decomposition under aerobic and anaerobic conditions. The aquatic HS formed from the four aquatic macrophytes showed similar features (e.g. molecular weight and aromaticity). This fact indicates little influence of the detritus quality or availability of oxygen on the fulvic acids (FA) and humic acid characteristics. Under aerobic condition a decrease in the polysaccharides content in FA occurred. HS from E. najas were related to less-recalcitrant features, while HS from S. molesta were related to recalcitrant.  相似文献   

13.
Nanoparticles occurring in the environment originate either from engineered, synthetically produced nanoparticles, or from naturally produced nanoparticles. The latter can be formed in natural media by light-induced reduction of metal ions in presence of natural organic matter, such as humic substances occurring widely in waters, soils and sediments. There is actually few knowledge on the effect of sunlight and of the nature of organic matter on nanoparticle formation. Therefore, we studied here the photoreduction of silver(I) ion to silver nanoparticles with and without ferrous ion under oxic and anoxic conditions, using humic and fulvic acids as proxies of natural organic matter. UV light-induced formation of silver nanoparticles was monitored up to 60 min by measuring surface plasmon resonance in air-saturated mixture and nitrogen-saturated mixture of silver(I) ion–organic matter. Results show that the surface plasmon resonance intensity was about 2.5 times higher in the nitrogen-purged solution mixture than the air-saturated solution. This finding suggests the oxygen-containing species had no major role in forming silver nanoparticles. Therefore, photo-driven formation of silver nanoparticles most likely involved photoactivation of silver(I) ion and natural organic matter complexes. We observed also that both iron(II) and iron(III) ions highly modified the surface plasmon resonance spectra of the particles with broader features. Results also reveal that in the presence of humic acid, the intensity of the surface plasmon resonance peak decreased by at least 50 %, while almost no change in the intensity was seen when fulvic acid was used. Overall, our findings demonstrate that the ligand–metal charge transfer process, affected by the nature of organic matter, i.e., humic acid versus fulvic acid, was influenced by redox iron species.  相似文献   

14.
The aerobic biodegradability of organic substances in water is characterized by determination of energy change ‐ ATP content in microbial cells during biodegradation. A satisfactory result is obtained under the following conditions: the initial concentration of tested substance is 100mg/l (as DOC), the amount of the inoculum in the biological medium is 500mg/l (as MLSS), and the duration of test time is 14 days. The evaluating system (peak time, peak height and IA index) is proposed to assess the biodegradability of 46 organic compounds and 7 wastewaters.  相似文献   

15.
Humic substances from soils and sediments can be defined as surface active substances based on the surface tension measurements. Although there are several micellar structural models of humic substances currently available, few studies evaluating humic substances as surfactants have been conducted to date. Therefore, we evaluated the ability of humic substances and their derivatives to influence surface tension. We found that the ability of a humic substance to influence the surface tension of a solution depends on its origin. Many industrially produced humic materials exerted little or no impact on surface tension, whereas humic substances isolated from natural environments (water, soil, peat, sediments, sludge from wastewater treatment facilities) exerted a large impact on surface tension. These findings indicate that the modification of humic substances can enable their use as surfactants. In addition, these findings indicate that solutions of humic substances and their derivatives can be used to increase the solubility of organic compounds.  相似文献   

16.
• High-solid anaerobic digestion (HS-AD) of sewage sludge (SS) is overviewed. • Factors affecting process stability and performance in HS-AD of SS are revealed. • HS effect and knowledge gaps of current research on the HS-AD of SS are identified. • Future efforts on addressing knowledge gaps and improving HS-AD of SS are proposed. High-solid anaerobic digestion (HS-AD) has been applied extensively during the last few decades for treating various organic wastes, such as agricultural wastes, organic fractions of municipal solid wastes, and kitchen wastes. However, the application of HS-AD to the processing of sewage sludge (SS) remains limited, which is largely attributable to its poor process stability and performance. Extensive research has been conducted to attempt to surmount these limitations. In this review, the main factors affecting process stability and performance in the HS-AD of SS are comprehensively reviewed, and the improved methods in current use, such as HS sludge pre-treatment and anaerobic co-digestion with other organic wastes, are summarised. Besides, this paper also discusses the characteristics of substance transformation in the HS-AD of SS with and without thermal pre-treatment. Research has shown that the HS effect is due to the presence of high concentrations of substances that may inhibit the function of anaerobic microorganisms, and that it also results in poor mass transfer, a low diffusion coefficient, and high viscosity. Finally, knowledge gaps in the current research on HS-AD of SS are identified. Based on these, it proposes that future efforts should be devoted to standardising the definition of HS sludge, revealing the law of migration and transformation of pollutants, describing the metabolic pathways by which specific substances are degraded, and establishing accurate mathematical models. Moreover, developing green sludge dewatering agents, obtaining high value-added products, and revealing effects of the above two on HS-AD of SS can also be considered in future.  相似文献   

17.
Humic substances are poorly known, though they represent a major pool of non-biotic organic carbon on earth. In particular, there is little knowledge on the formation of humic substances by irradiation of organic matter dissolved in waters. Specifically, it is known that humic substances can be formed from proteins by photochemical processes in surface waters, but the role of single amino acids and their transformation pathways are not yet known. Therefore, here we studied the phototransformation of aqueous l-tryptophan under simulated sunlight. Irradiated l-tryptophan solutions were analyzed by absorption, fluorescence, nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies, chromatography, potentiometry and mass spectrometry (MS). The solutions appeared turbid after irradiation; therefore, nephelometry and dynamic laser light scattering were used to characterize the suspended particles. Results show that about 95% of l-tryptophan was degraded in 8-h irradiation, undergoing deamination and decarboxylation of the amino acidic moieties to release ammonium and formate. The MS signal at m/z 146 suggests the formation of 3-ethylindole, while pH-metric and NMR data revealed the presence of hydroxylated compounds. The phototransformation intermediates of l-tryptophan had fluorescence and absorption spectra similar to those of humic substances, they were able to produce ·OH upon irradiation and tended to aggregate by both ionic and hydrophobic interactions. Overall, our findings reveal for the first time the nature of products formed upon phototransformation of l-tryptophan. Interestingly, the transformation of l-tryptophan is quite different from that of the previously studied l-tyrosine, although both compounds produce humic-like materials under irradiation.  相似文献   

18.
This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.  相似文献   

19.
Dissolved organic substances (carbohydrates, organic nitrogen, free amino acids) were measured in the German Bight (North Sea) in June, 1981. During and before this survey, sea foam was observed in the east Frisian coastal water and it accumulated on the nearby beaches to an unusually high extent. In this coastal water area, a large Phaeocystis pouchetii Lagerheim bloom and very high concentrations of dissolved organic matter were found. The above dissolved organic substances were all positively correlated to a highly significant degree with P. pouchetii cell numbers in the bloom area. An influence of salinity (or river water) on this correlation could be excluded. Thus, exudation or decomposition products of P. pouchetii were most likely the cause of the unusually high concentrations of dissolved organic matter in the bloom area off the east Frisian coast, where P. pouchetii blooms have been reported for many years. Ammonia concentrations were very low in the P. pouchetii bloom area; this and the accumulation of dissolved organic substances might lead to speculation that decomposition of dissolved organic matter by bacteria could have been reduced due to antibiotic activity of P. pouchetii.  相似文献   

20.
通过人工制备载带B[a]P的纳米碳(C)和纳米二氧化硅(SiO2)颗粒,采用气管滴注染毒方式,以7.5mg·kg-1(以体重计)的染毒剂量急性染毒大鼠,观察染毒24小时后载带B[a]P的纳米C/SiO2颗粒对机体产生氧化应激损伤的联合毒性效应.结果表明,在急性染毒后大鼠外周血中反映机体脂质过氧化损伤程度指标的丙二醛(MDA)含量表现为染毒组较对照组显著增加(p<0.05),表明纳米颗粒诱发机体发生了氧化应激反应.在急性染毒后各组大鼠肺泡灌洗液中谷胱苷肽过氧化物酶(GSH-PX)和超氧化物岐化酶(T-SOD)活力与对照组相比显著增加(p<0.05)(载带B[a]P的纳米SiO2组除外);载带B[a]P的纳米SiO2组肺泡灌洗液中GSH-PX活力与对照组相比无显著差异,而与单纯纳米SiO2组和B[a]P组比较显著降低,推测与抗氧化酶的一过性增高有关;载带B[a]P的纳米C组肺泡灌洗液T-SOD活力与其单纯纳米C组和单纯B[a]P组比较显著增加(p<0.05),由此表明载带B[a]P的复合纳米C/SiO2颗粒在致机体氧化损伤效应方面二者存在一定的协同作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号