首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic land‐cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity‐rich forests are being converted to oil‐palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well‐being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil‐palm monoculture by sampling stream fish communities in an oil‐palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil‐palm plantation streams that lacked riparian reserves. Thus, a land‐sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil‐palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil‐palm plantations standard practice, and we encourage palm‐oil purchasers to source only palm oil from plantations that employ this practice.  相似文献   

2.
Agriculturally altered vegetation, especially oil‐palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil‐palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil‐palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance‐tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil‐palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil‐palm plantations can provide habitat for species that dwell in secondary forests. Efectos de las Plantaciones de Palma de Aceite sobre la Diversidad de Anuros Tropicales Faruk et al.  相似文献   

3.
Aim and Background The use of palm oil for bioenergy has become increasingly important for Europe in the last years because of its favourable proportion of yield to area under cultivation. Thus, palm oil presents a low-priced alternative to other energy sources, e.?g. rapeseed oil. Currently, however, palm oil gets a bad press due to new studies about the negative environmental consequences of cultivation practices. Due to the high demand for palm oil, land is becoming scarce. This results in the clearing of primary forests and consequently in the loss of biodiversity and in an increase of greenhouse gas emissions. To reduce the latter, not only the process of oil palm cultivation has to be optimised but also the practice of establishing new plantations by clearing natural forests has to be questioned. The aim of this article is to disclose potentials for greenhouse gas reductions in existing as well as in newly-planned oil palm plantations. Results and Discussion For existing oil palm plantations, two main fields for possible optimisation can be identified: one is improving the plantation management, the other is increasing the efficiency of the utilisation of waste products such as fibres and husks or oil mill effluents. For newly-planned oil palm plantations alternative land use scenarios have to be considered. The results show a big potential for optimisation. Thus, the greenhouse gas balance improves slightly if plantations are run more efficiently. If the waste products are used to generate energy, there are significantly positive effects on the greenhouse gas balance, especially through the reduction of methane emissions. By running a plantation in a professional best-practice way, 4.8 t of greenhouse gases can be saved annually per hectare cultivation area, expressed as CO2 equivalents. If newly-planned oil palm plantations are established on fallow land, greenhouse gas emissions can be further reduced by an additional 4.8 t of CO2 equivalents per hectare and year. From an economic perspective, this may be more costly than clearing primary forest but it is advantageous for both the greenhouse gas balance and the biodiversity of the concerned areas. All in all, exploiting the whole potential for optimisation could result in the saving of 10.2 t CO2 equivalents per hectare and year more than it is the case in the existing mode of cultivation. Conclusions and Perspectives Due to the high demand of palm oil by the world market, cultivation areas for oil palms are becoming increasingly scarce. Thus, it is vital to exploit the full potential of oil palm cultivation in an environmentally and economically sustainable way. The management of plantations has to be optimised and a generally valid waste management system must be implemented in existing and future plantations. New plantations should preferably be established on fallow land, not by the clearing of primary forests. It is essential for a sustainable palm oil production to tap the full potential for optimisation. This, however, is currently not happening due to the high start-up investments. It is thus recommended to introduce an internationally valid certification system which may provide an incentive for more sustainable and effective production methods.  相似文献   

4.
Conversion of agricultural land to forest plantations is a major driver of global change. Studies on the impact of forest plantations on biodiversity in plantations and in the surrounding native vegetation have been inconclusive. Consequently, it is not known how to best manage the extensive areas of the planet currently covered by plantations. We used a novel, long‐term (16 years) and large‐scale (30,000 ha) landscape transformation natural experiment (the Nanangroe experiment, Australia) to test the effects of land conversion on population dynamics of 64 bird species associated with woodland and forest. A unique aspect of our study is that we focused on the effects of plantations on birds in habitat patches within plantations. Our study design included 56 treatment sites (Eucalyptus patches where the surrounding matrix was converted from grazed land to pine plantations), 55 control sites (Eucalyptus patches surrounded by grazed land), and 20 matrix sites (sites within the pine plantations and grazed land). Bird populations were studied through point counts, and colonization and extinction patterns were inferred through multiple season occupancy models. Large‐scale pine plantation establishment affected the colonization or extinction patterns of 89% of studied species and thus led to a comprehensive turnover in bird communities inhabiting Eucalyptus patches embedded within the maturing plantations. Smaller bodied species appeared to respond positively to plantations (i.e., colonization increased and extirpation of these species decreased in patches surrounded by plantations) because they were able to use the newly created surrounding matrix. We found that the effects of forest plantations affected the majority of the bird community, and we believe these effects could lead to the artificial selection of one group of species at the expense of another.  相似文献   

5.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

6.
Beyond Kyoto: Forest Management in a Time of Rapid Climate Change   总被引:9,自引:0,他引:9  
Abstract: Policies to reduce global warming by offering credits for carbon sequestration have neglected the effects of forest management on biodiversity. I review properties of forest ecosystems and management options for enhancing the resistance and resilience of forests to climate change. Although forests, as a class, have proved resilient to past changes in climate, today's fragmented and degraded forests are more vulnerable. Adaptation of species to climate change can occur through phenotypic plasticity, evolution, or migration to suitable sites, with the latter probably the most common response in the past. Among the land-use and management practices likely to maintain forest biodiversity and ecological functions during climate change are (1) representing forest types across environmental gradients in reserves; (2) protecting climatic refugia at multiple scales; (3) protecting primary forests; (4) avoiding fragmentation and providing connectivity, especially parallel to climatic gradients; (5) providing buffer zones for adjustment of reserve boundaries; (6) practicing low-intensity forestry and preventing conversion of natural forests to plantations; ( 7) maintaining natural fire regimes; (8) maintaining diverse gene pools; and (9) identifying and protecting functional groups and keystone species. Good forest management in a time of rapidly changing climate differs little from good forest management under more static conditions, but there is increased emphasis on protecting climatic refugia and providing connectivity.  相似文献   

7.
Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old‐growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta‐analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old‐growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional‐group–specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old‐growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old‐growth values (between 140 years and never for recovery to old‐growth values at 95% prediction limits). Non‐saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old‐growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives.  相似文献   

8.
Land‐cover and climate change are both expected to alter species distributions and contribute to future biodiversity loss. However, the combined effects of land‐cover and climate change on assemblages, especially at the landscape scale, remain understudied. Lowland tropical amphibians may be particularly susceptible to changes in land cover and climate warming because many species have narrow thermal safety margins resulting from air and body temperatures that are close to their critical thermal maxima (CTmax). We examined how changing thermal landscapes may alter the area of thermally suitable habitat (TSH) for tropical amphibians. We measured microclimates in 6 land‐cover types and CTmax of 16 frog species in lowland northeastern Costa Rica. We used a biophysical model to estimate core body temperatures of frogs exposed to habitat‐specific microclimates while accounting for evaporative cooling and behavior. Thermally suitable habitat area was estimated as the portion of the landscape where species CTmax exceeded their habitat‐specific maximum body temperatures. We projected changes in TSH area 80 years into the future as a function of land‐cover change only, climate change only, and combinations of land‐cover and climate‐change scenarios representing low and moderate rates of change. Projected decreases in TSH area ranged from 16% under low emissions and reduced forest loss to 30% under moderate emissions and business‐as‐usual land‐cover change. Under a moderate emissions scenario (A1B), climate change alone contributed to 1.7‐ to 4.5‐fold greater losses in TSH area than land‐cover change only, suggesting that future decreases in TSH from climate change may outpace structural habitat loss. Forest‐restricted species had lower mean CTmax than species that occurred in altered habitats, indicating that thermal tolerances will likely shape assemblages in changing thermal landscapes. In the face of ongoing land‐cover and climate change, it will be critical to consider changing thermal landscapes in strategies to conserve ectotherm species.  相似文献   

9.
Abstract:  We compared the species diversity of copronecrophagous beetles (Scarabaeinae) , bats, and frogs in tropical montane cloud forest (original vegetation) and shaded coffee plantations (an agroecosystem common to the region) for a landscape in central Veracruz, Mexico. We sampled in three tropical montane cloud forest fragments and in three coffee plantations with traditional polyculture shade between 1998 and 2001. The three indicator groups responded differently to the transformation of tropical montane cloud forest into shaded coffee plantations. The species richness of frogs was one-fifth less in coffee plantations than in forest fragments, and only one-third of the frog species occurred in both forest fragments and coffee plantations. The number of beetle species and their abundance was significantly greater in coffee plantations than in the forest fragments, whereas species richness and species composition of bats were virtually the same in both habitats. The majority of the abundant species remained as such in both communities, but species that were less abundant were not scarce in both habitats. We attributed differences in the species assemblages to the differing degrees of penetrability of the borders of the two habitat types (especially for the coffee plantations) and to the differences in life-history traits among species. Shaded coffee plantations form a matrix that envelops the remaining fragments of cloud forest. Together they connect the forest fragments with the other habitats of the landscape and represent a highly functional resource for the preservation of biodiversity that serves as a complement to but not a substitute for cloud forest in this notably modified landscape.  相似文献   

10.
Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade‐tree diversity and shade‐tree carbon stocks in 14 plots of a 35‐ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long‐term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. Interacciones entre el Secuestro de Carbono y la Diversidad de Árboles de Sombra en una Cooperativa de Café de Pequeños Agricultores en El Salvador  相似文献   

11.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

12.
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   

13.
We conducted breeding bird surveys in Minnesota, Wisconsin, and South Dakota in 12 hybrid poplar plantations and surrounding landscapes from 1992 to 1994. Plantations varied in age, shape, composition of surrounding landscape, and internal vegetative heterogeneity. Numbers of breeding bird individuals and species in plantations were lower than in surrounding forest/shrub habitat, but higher than in row crops. Numbers of individuals observed within several bird groups based on migratory status and habitat preference also differed among plantations and surrounding land-use types. Most differences were between numbers in plantations and row crops. Year-to-year changes in bird species composition in plantations were more likely in plantations between ages 2 and 4 years than in younger or older plantations. Correlative evidence from canonical correspondence analysis illustrated that plantation bird communities were related to habitat in surrounding landscapes, plantation age, size, latitude, and longitude. Additionally, more heterogeneous plantations had more species, individuals, and numbers of long-distance migrants. Plantations will likely not support bird communities that are comparable to natural forests in either species composition or species diversity. A goal would be to position them in the landscape to minimize impacts on regional biodiversity. This could be accomplished by maintaining structural diversity of plantations by creating a broad range of successional stages (ages) throughout plantations within a region. Size and connectivity of existing forest fragments may be increased by plantations, but fragmentation of natural open areas should be avoided.  相似文献   

14.
Birds defend oil palms from herbivorous insects.   总被引:3,自引:0,他引:3  
Top-down forces are expected to be important in regulating herbivore populations in most agricultural systems where primary productivity is high and species diversity is low. Under such conditions, trophic cascades are predicted to occur when predator populations are reduced or removed. Studies on how predator removal indirectly affects herbivory rates in agricultural systems are lacking. Through a bird-exclosure experiment, I test the hypothesis that insectivorous birds indirectly defend oil palms (Elaeis guineensis) from herbivorous insects. Results show that bird exclusion significantly increased herbivory damage to oil palms, and that the size of this exclusion effect increased with bird density, although the latter result was not statistically significant. These findings suggest that insectivorous birds deliver a natural pest control service for oil palm agriculture, which is important not only for the direct benefits it delivers for human welfare, but also in strengthening the economic justifications for conserving the remaining natural habitats and biodiversity in agricultural landscapes.  相似文献   

15.
16.
Abstract: The recent advent of carbon crediting has led to a rapid rise in biosequestration projects that seek to remove carbon from the atmosphere through afforestation and forest rehabilitation. Such projects also present an important potential opportunity to reverse biodiversity losses resulting from deforestation and forest degradation, but the biodiversity benefits of different forms of biosequestration have not been considered adequately. We captured birds in mist nets to examine the effects of rehabilitation of logged forest on birds in Sabah, Borneo, and to test the hypothesis that rehabilitation restores avian assemblages within regenerating forest to a condition closer to that seen in unlogged forest. Species richness and diversity were similar in unlogged and rehabilitated forest, but significantly lower in naturally regenerating forest. Rehabilitation resulted in a relatively rapid recovery of populations of insectivores within logged forest, especially those species that forage by sallying, but had a marked adverse effect on frugivores and possibly reduced the overall abundance of birds within regenerating forest. In view of these results, we advocate increased management for heterogeneity within rehabilitated forests, but we strongly urge an increased role for forest rehabilitation in the design and implementation of a biodiversity‐friendly carbon‐offsetting market.  相似文献   

17.
There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self‐organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1–59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species’ origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal‐dispersed seeds were from near‐basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1–25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near‐basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old‐growth forest is crucially important for sustaining tropical biodiversity.  相似文献   

18.
通过对雷州半岛桉树人工林大面积土壤调查研究和多点田间试验,揭示了桉树人工林地力退化的成因,提出了可行的防治措施。其退化成因是桉树人工林生态系统本身的脆弱性、水土流失严重、人为因素对生物积累过程的干扰、桉树全树利用方式、耕垦的不适当以及林地养分收支严重失衡。其防治措施是增加桉树人工林生物多样性、回归林地调落于土壤、应用适当的采伐利用方式和采伐剩余物的处理方式。  相似文献   

19.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

20.
A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co‐benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co‐benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. Identificación de Áreas en Brasil que Optimizan la Conservación del Carbono del Bosque, Jaguares y la Biodiversidad.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号