首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The natural vegetation growing along a wastewater channel was subjected to analyze the uptake of Cadmium (Cd) and Zinc (Zn) and their subsequent accumulation in aboveground and underground plant parts. Species which were mycorrhizal and growing in soils receiving industrially contaminated wastewater were collected along with their rhizospheric soil samples. The nearby uncontaminated control (reference) area was also subjected to sampling on similar pattern for comparison. Both Cd and Zn concentrations were significantly higher in soils of the study area as compared to the reference site. Five plant species i.e. Desmostachya bipinnata, Dichanthium annulatum, Malvastrum coromandelianum, Saccharum bengalense, and Trifolium alexandrinum were analyzed for metal uptake. The maximum phytoaccumulation of Cd was observed in Desmostachya bipinnata (20.41 μg g−1) and Dichanthium annulatum (15.22 μg g−1) for shoot and root tissues, respectively. However, Malvastrum coromandelianum revealed maximum Zn accumulation for both the shoot and the root tissues (134 and 140 μg g−1, respectively). The examination of cleared and stained roots of the plants from both the areas studied revealed that all of them were colonized to a lesser or a greater degree by arbuscular mycorrhizal (AM) fungi. The Cd hyperaccumulating grasses i.e. Desmostachya bipinnata and Dichanthium annulatum, from study area had smaller root:shoot (R/S) ratio as compared to those growing on reference area indicating a negative pressure of soil metal contamination. The lower R/S ratio in the mycorrhizal roots observed was probably due to increased AM infection and its mediatory role in soil plant transfer of heavy metals. Furthermore, comparatively lower soil pH values in the study areas may have played a key role in making the overall phytoavailability of both the metals. Consequently variations in Cd and Zn tissue concentration among species were observed that also indicate the phytoaccumulation potential of the native species.  相似文献   

2.
To attempt to understand certain mechanisms causing the variations between rice cultivars with regard to Cd uptake and accumulation, pot soil experiments were conducted with two rice cultivars at different levels of Cd, i.e., 0 (the control), 10, 50 mg Cd kg−1 soil. The two rice cultivars differ significantly with regard to Cd uptake and accumulation. Root secretions of low-molecular-weight organic acids (LMWOA) for each treatment were measured with ion chromatography. The results showed that LMWOA concentrations in the soil planted with Shan you 63 (a high soil Cd accumulator) were all higher than those in the soil planted with Wu yun jing 7 (low soil Cd accumulator) at different soil Cd levels, although the magnitudes of the differences varied for individual LMWOA and depend on soil Cd concentrations. For all six LMWOA, there were significant differences at P < 0.05 or < 0.01 levels for soils treated with 10 and 50 mg kg−1 Cd. The magnitude of the differences was greater under soil Cd treatments, especially at relatively low levels (for example, 10 mg Cd kg−1 soil), than in the control. Acetic acid and formic acid constituted more than 96% of the total concentration of the six LMWOA, while citric acid constituted only about 0.1%. The rice cultivar with higher concentrations of LMWOA in soil accumulated more Cd in the plants. The results indicate that LMWOA secretion by rice root, especially in Cd-contaminated soils, is likely to be one of the mechanisms determining the plant Cd uptake properties of rice cultivars.  相似文献   

3.
Hyperaccumulation of metals by plants involves at least three processes: efficient absorption by roots, efficient root-to-shoot translocation and hypertolerance through internal detoxification. In this study, Thlaspi caerulescens was separately exposed to Cd and Zn at 0, 50, 100 and 200 μ M for 7 d to monitor plant responses in hydroponics. Significant dose-dependent accumulation was observed for both metals, mainly in roots (up to 3.2 and 9.2 mg g ?1 for Cd and Zn, respectively). However, Cd was more phytotoxic in terms of plant growth and photosynthesis. This higher toxicity was also evidenced by MetPLATE bioassay. Root exudation was significantly correlated to Cd and Zn translocation (r>0.85) proving its involvement in facilitating metal uptake. As for antioxidative responses, plants reacted to Cd and Zn by broadly exhibiting an elevation of glutathione reductase activity before declining at 200 μ M due to higher phytotoxicity. By contrast, superoxide dismutase activity was unlikely to be affected by both metals. Root-to-shoot apoplastic flow was traced using a fluorescent dye (trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic acid; PTS), whose concentration in leaves increased to a certain extent with Cd and Zn accumulation, indicating that heavy metals have a comparable effect to drought or salinity in promoting the passive diffusion of water and solutes. Nevertheless, Cd at 200 μ M hindered the diffusion of PTS and consequently affected the apoplastic transport in plants.  相似文献   

4.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

5.
Cd concentrations in mobile phases of soil are more representative than total Cd concentration for estimating Cd bioavailability, physicochemical reactivity and mobility. In this study, selective sequential extraction procedures were used to determine Cd in different soil phases. Soil samples and plants grown in these soils were collected from a serpentine and copper-mining area in Maden-Elazig-Turkey. The extracted fractions were exchangeable/carbonate, reducible-iron/manganese oxides, oxidizable-organic matter and sulfides, and residual phases except silicates. Concentrations of Cd in soils and plant samples were determined by flame atomic absorption spectrometry and inductively coupled plasma-mass spectrometry. We found that Cd concentrations in the EDTA and NH2OH·HCl extracts are higher in most soil samples compared to the other extracts. We conclude that Cd levels in mobile phases are unexpectedly high. The observed Cd concentrations are in ranges of 0.03–3.4 mg kg−1 for soil and 0.02–2.5 mg kg−1 for plant parts. The percentages of cadmium up to 56% in exchangeable and carbonates fractions were observed to be significantly higher than in those values less than 2% reported in literature. This study has shown that the modified extraction method can be usefully applied to determine Cd concentrations in potentially mobile phase of soil. Furthermore, it was concluded that Brassicasea and Rumex leaves can be used as hyperaccumulator plants because their translocation factor and/or enrichment coefficient values were found to be higher than 1.0.  相似文献   

6.
Effects of Cadmium on Nutrient Uptake and Translocation by Indian Mustard   总被引:1,自引:0,他引:1  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10–190 mg Cd kg–1 to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg–1 dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg–1 d.w. in the roots and 160 mg kg–1 d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg–1, and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg–1, then remained constant with Cd treatments from 110 to 190 mg kg–1. However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

7.
Pot experiments were conducted on cole (Brassica) grown in soils jointly treated with traces of two heavy metals cadmium (Cd) and zinc (Zn). As the concentration of heavy metals in the soil increased, the uptake of these metals by the plants rose. However, the ratio of heavy metal concentration in soil to uptake by plants increased at a slower rate. Bioavailability of heavy metals considered between the roots and soil using non-linear regressions was shown to be statistically significant. Similarly, the bioavailability of these two heavy metals between leaves and roots using a linear regression was also statistically significant. The bioconcentration factors (BCFs) for Cd and Zn were 0.282 and 4.289, respectively. Significant variation of BCF with the heavy metal bioavailability in soil was noted from non-linear models. The transfer factors (TFs) were 4.49 for Cd and 1.39 for Zn. The Zn concentration in leaves under all treatments did not exceed threshold set standards, but Cd levels exceeded these standards when the concentration of Cd in the soil was more than 1.92 mg kg?1 dry weight (dw). Data indicate that cole (Brassica) is not a suitable crop for oasis soils because of plant contamination with heavy metals, especially Cd.  相似文献   

8.
This study determined the concentration of three heavy metals zinc (Zn), lead (Pb), and cadmium (Cd) in soil and in a woody plant species, Milicia excelsa, at Ishiagu quarry, Nigeria. The highest soil concentrations of Zn, Pb, and Cd in soil were obtained at 1?m from the quarry site. In M. excelsa, the highest concentrations of Zn, Pb, and Cd were 3.12–9.1, 3.9–6.01, and 0.51–1.12?mg?kg?1, respectively. There were significant positive correlations between Cd and Zn (r?=?0.963) and Cd and Pb (r?=?0.974) in plants as well as between Cd and Pb (r?=?9.84) in soil. The level of Cd in soil reflected significant pollution compared to average global concentrations in soils.  相似文献   

9.
Abstract

Festuca rubra L. plants are pseudometallophytes colonizing abandoned Pb/Zn mine areas, successfully employed in phytostabilization. To study the contribution of low-molecular weight organic acids to metal tolerance, F. rubra plants were grown for three months in hydroponics with Cd (1.8, 18 and 36 µmol?L?1), Pb (50, 250 and 500?µmol?L?1) and Zn (0.3, 3 and 6?mmol?L?1), separately, and in ternary combination (18?µmol?L?1 Cd + 250?µmol?L?1 Pb + 0.3?mmol?L?1 Zn). The roots retained most of the metals but their distribution from shoot to root was altered when the plants were treated with the ternary combination. The main organic acids in roots were citrate and malate. At the lowest concentrations, the metals caused small reductions in biomass, had no effects on photosynthetic pigments nor on malondialdehyde, but led to increases in root organic acids. At higher concentrations, phytotoxic responses were observed, associated with a decline of citrate and malate in the roots.  相似文献   

10.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

11.
The use of higher plants to remediate contaminated land is known as phytoremediation, a term coined 15 years ago. Among green technologies addressed to metal pollution, phytoextraction has received increasing attention starting from the discovery of hyperaccumulator plants, which are able to concentrate high levels of specific metals in the above-ground harvestable biomass. The small shoot and root growth of these plants and the absence of their commercially available seeds have stimulated study on biomass species, including herbaceous field crops. We review here the results of a bibliographical survey from 1995 to 2009 in CAB abstracts on phytoremediation and heavy metals for crop species, citations of which have greatly increased, especially after 2001. Apart from the most frequently cited Brassica juncea (L.) Czern., which is often referred to as an hyperaccumulator of various metals, studies mainly focus on Helianthus annuus L., Zea mays L. and Brassica napus L., the last also having the greatest annual increase in number of citations. Field crops may compensate their low metal concentration by a greater biomass yield, but available data from in situ experiments are currently very few. The use of amendments or chelators is often tested in the field to improve metal recovery, allowing above-normal concentrations to be reached. Values for Zn exceeding 1,000 mg kg−1 are found in Brassica spp., Phaseolus vulgaris L. and Zea mays, and Cu higher than 500 mg kg−1 in Zea mays, Phaseolus vulgaris and Sorghum bicolor (L.) Moench. Lead greater than 1,000 mg kg−1 is measured in Festuca spp. and various Fabaceae. Arsenic has values higher than 200 mg kg−1 in sorghum and soybean, whereas Cd concentrations are generally lower than 50 mg kg−1. Assisted phytoextraction is currently facilitated by the availability of low-toxic and highly degradable chelators, such as EDDS and nitrilotriacetate. Currently, several experimental attempts are being made to improve plant growth and metal uptake, and results are being achieved from the application of organic acids, auxins, humic acids and mycorrhization. The phytoremediation efficiency of field crops is rarely high, but their greater growth potential compared with hyperaccumulators should be considered positively, in that they can establish a dense green canopy in polluted soil, improving the landscape and reducing the mobility of pollutants through water, wind erosion and water percolation.  相似文献   

12.
Cadmium (Cd), copper (Cu), and zinc (Zn) in carrots obtained from different regions throughout Japan were assessed in a baseline study on the contents of trace metals in foods. These three metals were measured by flameless atomic absorption spectrophotometry. The geometric mean contents (with one geometric standard deviation indicated in parentheses) of Cd, Cu, and Zn were 0.02 (2.2), 0.7 (2.1), and 2.4 (1.6) mg?kg?1 wet weight in carrots obtained in Japan. While there was a close relationship among the contents of the three metals in the carrots grown in Cambisols and Gleysols, a significant relationship was recognized only between the contents of Cd and Zn in those grown in Andosols and Fluvic Gleysols. Cd and Zn are classified as 2B metals in the periodic table of elements, and the authors speculate that the similarity of the metal characteristics between Cd and Zn may be responsible for the close relationship in the contents of the two metals, with no relation to the soil type.  相似文献   

13.
The ecological toxicity of cadmium (Cd, 10 mg kg−1 of dry weight soil) and butachlor (10, 50 and100 mg kg−1 of dry weight soil) in both their single and combined effects on soil urease and phosphatase was studied after 1, 3, 7, 14, 21 and 28 days exposure under controlled conditions in paddy and phaeozem soils. The results showed that Cd reduced the activities of urease and phosphatase at early incubation time (1–7 days), while the reduction almost disappeared at the end of the incubation. The effect of Cd on phosphatase was more pronounced than that on urease. The activities of urease and phosphatase were reduced by butachlor, while urease activity was significantly (P < 0.05 or P < 0.01) improved when the concentrations of butachlor were 10 and 50 mg kg−1 at the end of the incubation. When Cd (10 mg kg−1) was combined with butachlor (50 and 100 mg kg−1), the activities of urease and phosphatase became lower than without combination at early incubation time, which indicated that the toxicity of Cd significantly increased (P < 0.05 or P < 0.01). However, when Cd (10 mg kg−1) was combined with butachlor (10 mg kg−1), the activities of urease and phosphatase became higher than those without combination at the end of the incubation, which indicated that the toxicity of Cd decreased. It was indicated that the combined effects depended largely on the incubation time and the concentration ratio of Cd and butachlor. In addition, it was showed that the combined effects of butachlor and Cd appeared different in paddy from phaeozem, which may be related to the different properties of these soils.  相似文献   

14.
Mycorrhizal and non-mycorrhizal alfalfa (Medicago sativa) was grown in pots containing soil artificially contaminated with various levels of benzo[a]pyrene (B[a]P)(0, 1, 10 and 100 mg kg–1). Soil and plants were sampled after 30, 40, 50, 60 and 90 days and compared with unlanted pots. The percentage of mycorrhizal root length colonized by Glomus caledoniun was not significantly affected by the addition of B[a]P up to 10 mg kg–1 but was significantly lower at 100 mg kg–1B[a]P compared with low concentrations (p < 0.05). There was no difference in soil polyphenol oxidase and dehydrogenase activity among the controls and applications of 1 and 10 mg kg–1 of B[a]P. However, enzyme activities were significantly higher at 100 mg kg–1B[a]P compared with the other three treatments, and there was no mycorrhizal effect. Over a period of 90 days the concentration of B[a]P in soil in which alfalfa was grown was significantly lower than in unplanted soil (p < 0.05). Degradation rates of B[a]P added at 1, 10 and 100 mg kg–1 without G. caledonium were 76, 78 and 53%, and with mycorrhizal inoculation were 86, 87 and 57%. The degradation rate in unplanted soil was significantly lower than in planted soil, and was significantly higher in medium- and low-B[a]P treatments than in the high B[a]P concentration tested. There is a possibility of enhancement phytoremediation of PAHs in rhizosphere soil with arbuscular mycorrhizal fungi.  相似文献   

15.
In order to assess the potential of As and heavy metal contamination derived from past mining activity and to estimate the human bioavailability quotients for As and heavy metals. Tailings, soils and crop samples were collected and analysed for As, Cd, Cu, Pb and Zn. The mean concentrations of As, Cd, Cu, Pb and Zn in the tailings were 68.5, 7.8, 99, 3,754 and 733 µg g–1, respectively. Maximum Pb concentration in tailings was up to 90 times higher than its tolerable level. The concentrations of these metals were highest in the soils from the dressing plant area, and decreased in the order: farmland soil to paddy soil. In particular, some of the soils from the dressing plant area contained more than 1% of Pb and Zn. The pollution index ranged from 0.19 to 1.93 in paddy soils, and from 1.47 to 3.60 in farmland soils. The average concentrations of heavy metals in crops collected from farmland were higher than those in rice stalks or rice grains, and higher than the internationally accepted limits for vegetables. Element concentrations extracted from farmland soils within the simulated human stomach for 1 h are 9.4 mg kg–1 As, 3.8 mg kg–1 Cd, 37 mg kg–1 Cu, 250 mg kg–1 Pb and 301 mg kg–1 Zn. In particular, the extracted concentrations of Cd, Pb and Zn are in excess of the tolerable levels. The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion (by inhalation and from dirty hands) of soils by the local population could pose a potential health threat due to long-term toxic element exposure.  相似文献   

16.
茄子苗对镉积累和耐性的品种间差异   总被引:1,自引:0,他引:1  
通过盆栽实验方法研究了13种茄子幼苗对镉(Cd)积累与耐性的品种间差异。结果表明,这些茄子幼苗根及地上部Cd含量均随土壤中外加Cd的量的增加而提高。品种间存在着显著差异(P<0.05),其中Cd含量最高品种根部和地上部的Cd含量分别为Cd含量最低品种的2.1、2.4倍(2mg·kg-1Cd处理组)和1.5、1.6倍(4mg·kg-1Cd处理组)。不同品种幼苗对Cd的富集系数均大于1,表现出较强的富集能力。但转运系数均小于1,Cd从根部向地上部转移能力较弱,大多数品种间差异不大。当Cd添加量为2mg·kg-1时,只有绿龙长茄地上部生物量显著下降(P<0.05)。当Cd添加量提高到4mg·kg-1时,6个品种地上部生物量显著下降(P<0.05),这些品种对Cd的耐性较弱。综合评价,辽茄三号对Cd积累的含量最低,富集系数和转移系数也较低,对Cd具有较强的耐性,具有Cd低积累特征。  相似文献   

17.
The use of tree species for phytoremediation of contaminated soil offers the advantage of a large biomass in which to store contaminants. We investigated the cadmium (Cd) and zinc (Zn) accumulation ability of Evodiopanax innovans, a common deciduous tree species belonging to the Araliaceae family and widely found in secondary forests in Japan. Sampling was conducted at an old silver mine. Leaf samples were collected from nine tree species, including E. innovans. The seasonal variation of metal concentrations in the leaves and the detailed distribution of metals in the leaves and twigs of E. innovans were measured. We also analyzed the contents of organic acids in the leaves. The highest concentration of Cd in the leaves of E. innovans was 118 μg/g, which exceeds the threshold level for being considered a Cd hyperaccumulator (100 μg/g). For Zn, the highest value was 1040 μg/g in leaves, which is less than required to qualify as a Zn hyperaccumulator. Both Cd and Zn were found to accumulate in the petioles and veins of leaves and the bark of twigs. Since the oxalic acid content of leaves showed a weak correlation with Cd concentration, oxalic acid may play an important role in the accumulation of Cd. Taking both the Cd concentration level and the biomass of this woody plant into consideration, it may be possible to use E. innovans for the phytoremediation of Cd-contaminated soils.  相似文献   

18.
重金属积累对土壤酶活性的影响   总被引:10,自引:0,他引:10  
研究了华北平原某铅冶炼厂附近农田33个土壤样品中重金属积累对土壤酶活性的影响。结果表明,样品中Pb和Cd全量的平均值分别为144和5.59mg·kg-1,DTPA态Pb和Cd含量平均值分别为54.1和0.964mg·kg-1,均超过了未污染农田潮土的正常范围,而Cu、Ni和Zn的有效性和全量与未污染土壤接近;土壤过氧化氢酶活性与DTPA态Pb和Cd含量、全Pb含量均呈显著的负线性关系(P<0.01);与磷酸酶和脲酶相比,土壤脱氢酶活性更易受到土壤中Pb和Cd积累的影响;随DTPA-Ni含量增加,土壤蛋白酶和碱性磷酸酶活性增加(P<0.1);土壤脲酶活性与重金属全量或有效态重金属含量无显著相关性(P>0.1)。以上结果说明,利用土壤过氧化氢酶和脱氢酶活性能够表征基本性质较为一致的土壤中重金属污染程度;与重金属全量相比,有效态重金属对土壤酶活性影响更大。  相似文献   

19.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

20.
We investigated the effect of Cd with different concentrations in soil (control, 0.5, 1.0, 1.5, and 2.0 mg kg?1) on Salvia miltiorrhiza. The growth of S. miltiorrhiza was examined at 90 and 120 d, while active components were tested at 0, 30, 60, 90, and 120 d; Cd uptake was measured at days 0, 90, and 120. The biomass data indicated that high Cd concentration can stimulate the accumulation of biomass after a long treatment. The Cd content in the above- and below-ground parts strongly corresponds to the bioavailable Cd extracted by ethylene diamine tetraacetic acid (EDTA) and acetic acid. The Cd content in the below-ground parts of control approached the Cd standards given by World Health Organization after 120 d. The Cd content in the below-ground parts of S. miltiorrhiza at a Cd concentration of 0.5 mg kg?1 exceeded the Cd standards after being grown for 90 and 120 days. The accumulation of hydrosoluble components in the above-ground parts appeared later than that in the below-ground parts. With longer treatment time, high Cd treatment promoted an accumulation of hydrosoluble and liposoluble components. The Cd content in the below-ground plant parts indicated that there was still a risk of exceeding the Cd limit for S. miltiorrhiza grown in the soil contaminated by low-concentration Cd after a long time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号