首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Bonin MC  Almany GR  Jones GP 《Ecology》2011,92(7):1503-1512
Disturbance can result in the fragmentation and/or loss of suitable habitat, both of which can have important consequences for survival, species interactions, and resulting patterns of local diversity. However, effects of habitat loss and fragmentation are typically confounded during disturbance events, and previous attempts to determine their relative significance have proved ineffective. Here we experimentally manipulated live coral habitats to examine the potential independent and interactive effects of habitat loss and fragmentation on survival, abundance, and species richness of recruitment-stage, coral-associated reef fishes. Loss of 75% of live coral from experimental reefs resulted in low survival of a coral-associated damselfish and low abundance and richness of other recruits 16 weeks after habitat manipulations. In contrast, fragmentation had positive effects on damselfish survival and resulted in greater abundance and species richness of other recruits. We hypothesize that spacing of habitat through fragmentation weakens competition within and among species. Comparison of effect sizes over the course of the study period revealed that, in the first six weeks following habitat manipulations, the positive effects of fragmentation were at least four times stronger than the effects of habitat loss. This initial positive effect of fragmentation attenuated considerably after 16 weeks, whereas the negative effects of habitat loss increased in strength over time. There was little indication that the amount of habitat influenced the magnitude of the habitat fragmentation effect. Numerous studies have reported dramatic declines in coral reef fish abundance and diversity in response to disturbances that cause the loss and fragmentation of coral habitats. Our results suggest that these declines occur as a result of habitat loss, not habitat fragmentation. Positive fragmentation effects may actually buffer against the negative effects of habitat loss and contribute to the resistance of reef fish populations to declines in coral cover.  相似文献   

2.
Abstract:  Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However, even small habitat patches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of the focal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.  相似文献   

3.
Abstract: The endangered grassland daisy Rutidosis leptorrhynchoides has been subject to severe habitat destruction and fragmentation over the past century. Using allozyme markers, we examined the genetic diversity and structure of 16 fragmented populations. The species had high genetic variation compared to other plant species, and both polymorphism and allelic richness showed strong positive relationships with log reproductive population size, reflecting a loss of rare alleles (frequency of q < 0.1) in smaller populations. Fixation coefficients were positively related to size, due either to a lack of rare homozygotes in small populations or to Wahlund effects (owing to spatial genetic structure) in large ones. Neither gene diversity nor heterozygosity was related to population size, and other population parameters such as density, spatial contagion, and isolation had no apparent effect on genetic variation. Genetic divergence among populations was low , despite a large north-to-south break in the species' current distribution. To preserve maximum genetic variation, conservation strategies should aim to maintain the five populations larger than 5000 reproductive plants, all of which occur in the north of the range, as well as the largest southern population of 626 plants at Truganina. Only one of these is currently under formal protection. High heterozygosity in smaller populations suggests that they are unlikely to be suffering from inbreeding depression and so are also valuable for conservation. Erosion of allelic richness at self-incompatibility loci, however, may limit the reproductive capacity of populations numbering less than 20 flowering plants.  相似文献   

4.
Nitrogen (N) deposition from agriculture and combustion of fossil fuels is a major threat to plant diversity, but its effects on organisms at higher trophic levels are unclear. We investigated how N deposition may affect species richness and abundance (number of individuals per species) in butterflies. We reviewed the peer-reviewed literature on variables used to explain spatial variation in butterfly species richness and found that vegetation variables appeared to be as important as climate and habitat variables in explaining butterfly species richness. It thus seemed likely that increased N deposition could indirectly affect butterfly communities via its influence on plant communities. To test this prediction, we analyzed data from the Swiss biodiversity monitoring program for vascular plants and butterflies in 383 study sites of 1 km2 that are evenly distributed throughout Switzerland. The area has a modeled N deposition gradient of 2–44 kg N ha−1 year−1. We used traditional linear models and structural equation models to infer the drivers of the spatial variation in butterfly species richness across Switzerland. High N deposition was consistently linked to low butterfly diversity, suggesting a net loss of butterfly diversity through increased N deposition. We hypothesize that at low elevations, N deposition may contribute to a reduction in butterfly species richness via microclimatic cooling due to increased plant biomass. At higher elevations, negative effects of N deposition on butterfly species richness may also be mediated by reduced plant species richness. In most butterfly species, abundance was negatively related to N deposition, but the strongest negative effects were found for species of conservation concern. We conclude that in addition to factors such as intensified agriculture, habitat fragmentation, and climate change, N deposition is likely to play a key role in negatively affecting butterfly diversity and abundance.  相似文献   

5.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

6.
The negative consequences of habitat fragmentation for plant communities have been documented in many regions of the world. In some fragmented habitats, livestock grazing has been proposed to be a dispersal mechanism reducing isolation between fragments. In others, grazing acts together with fragmentation in a way that increases habitat degradation. Iberian gypsum plant communities have been grazed and fragmented by agricultural practices for centuries. Although their conservation is considered a priority by the European Community, the effects of fragmentation on gypsum plant communities and the possible role of livestock grazing remain unknown. In addition, a substantial proportion of plant species growing in gypsum environments are gypsum specialists. They could be particularly affected by fragmentation, as was found for other habitat specialists (i.e., serpentine and calcareous specialists). In this study (1) we investigated the effect of fragmentation and grazing on gypsum plant community composition (species and life-forms), and (2) we tested to see if gypsum specialists were differently affected by fragmentation and grazing than habitat generalists. A vegetation survey was conducted in the largest gypsum outcrop of Europe (Middle Ebro Valley, northeast Spain). Fragmented and continuous sites in grazed and ungrazed areas were compared. Measurements related to species and composition of life-forms were contrasted first for the whole gypsum plant community and then specifically for the gypsum specialists. In the whole community, our results showed lower plant species diversity in fragmented sites, mainly due to the larger dominance of species more tolerant to fragmented habitat conditions. With livestock grazing, the plant species richness and the similarity in plant species composition between remnants was larger, suggesting that animals were acting as dispersal agents between fragments. As expected, gypsum specialists were less abundant in fragmented areas, and grazing led to the disappearance of the rare gypsum specialist Campanula fastigiata. According to our results, conservation strategies for gypsum plant communities in human-dominated landscapes should consider that fragmentation and grazing modify plant community composition affecting gypsum specialists in particular.  相似文献   

7.
Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape.  相似文献   

8.
When changes in the frequency and extent of disturbance outstrip the recovery potential of resident communities, the selective removal of species contributes to habitat loss and fragmentation across landscapes. The degree to which habitat change is likely to influence community resilience will depend on metacommunity structure and connectivity. Thus ecological connectivity is central to understanding the potential for cumulative effects to impact upon diversity. The importance of these issues to coastal marine communities, where the prevailing concept of open communities composed of highly dispersive species is being challenged, indicates that these systems may be more sensitive to cumulative impacts than previously thought. We conducted a disturbance-recovery experiment across gradients of community type and environmental conditions to assess the roles of ecological connectivity and regional variations in community structure on the recovery of species richness, total abundance, and community composition in Mahurangi Harbour, New Zealand. After 394 days, significant differences in recovery between sites were apparent. Statistical models explaining a high proportion of the variability (R2 > 0.92) suggested that community recovery rates were controlled by a combination of physical and ecological features operating across spatial scales, affecting successional processes. The dynamic and complex interplay of ecological and environmental processes we observed driving patch recovery across the estuarine landscape are integral to recovery from disturbances in heterogeneous environments. This link between succession/recovery, disturbance, and heterogeneity confirms the utility of disturbance-recovery experiments as assays for cumulative change due to fragmentation and habitat change in estuaries.  相似文献   

9.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

10.
Increased habitat diversity is often predicted to promote the diversity of animal communities because a greater variety of habitats increases the opportunities for species to specialize on different resources and coexist. Although positive correlations between the diversities of habitat and associated animals are often observed, the underlying mechanisms are only now starting to emerge, and none have been tested specifically in the marine environment. Scleractinian corals constitute the primary habitat-forming organisms on coral reefs and, as such, play an important role in structuring associated reef fish communities. Using the same field experimental design in two geographic localities differing in regional fish species composition, we tested the effects of coral species richness and composition on the diversity, abundance, and structure of the local fish community. Richness of coral species overall had a positive effect on fish species richness but had no effect on total fish abundance or evenness. At both localities, certain individual coral species supported similar levels of fish diversity and abundance as the high coral richness treatments, suggesting that particular coral species are disproportionately important in promoting high local fish diversity. Furthermore, in both localities, different microhabitats (coral species) supported very different fish communities, indicating that most reef fish species distinguish habitat at the level of coral species. Fish communities colonizing treatments of higher coral species richness represented a combination of those inhabiting the constituent coral species. These findings suggest that mechanisms underlying habitat-animal interaction in the terrestrial environment also apply to marine systems and highlight the importance of coral diversity to local fish diversity. The loss of particular key coral species is likely to have a disproportionate impact on the biodiversity of associated fish communities.  相似文献   

11.
Reviews that summarize the genetic diversity of plant species in relation to their life history and ecological traits show that forest trees have more genetic diversity at population and species levels than annuals or herbaceous perennials. In addition, among-population genetic differentiation is significantly lower in trees than in most herbaceous perennials and annuals. Possible reasons for these differences between trees and herbaceous perennials and annuals have not been discussed critically. Several traits, such as high rates of outcrossing, long-distance pollen and seed dispersal, large effective population sizes (Ne), arborescent stature, low population density, longevity, overlapping generations, and occurrence in late successional communities, may make trees less sensitive to genetic bottlenecks and more resistant to habitat fragmentation or climate change. We recommend that guidelines for genetic conservation strategies be designed differently for tree species versus other types of plant species. Because most tree species fit an LH scenario (low [L] genetic differentiation and high [H] genetic diversity), tree seeds could be sourced from a few populations distributed across the species’ range. For the in situ conservation of trees, translocation is a viable option to increase Ne. In contrast, rare herbaceous understory species are frequently HL (high differentiation and low diversity) species. Under the HL scenario, seeds should be taken from many populations with high genetic diversity. In situ conservation efforts for herbaceous plants should focus on protecting habitats because the typically small populations of these species are vulnerable to the loss of genetic diversity. The robust allozyme genetic diversity databases could be used to develop conservation strategies for species lacking genetic information. As a case study of reforestation with several tree species in denuded areas on the Korean Peninsula, we recommend the selection of local genotypes as suitable sources to prevent adverse effects and to insure the successful restoration in the long term.  相似文献   

12.
Habitat loss and degradation are primary threats to amphibians and reptiles, but the relative effects of common land uses on assemblages and the mechanisms that underlie faunal responses are poorly studied. We reviewed the effects of four prevalent types of habitat alteration (urbanization, agriculture, livestock grazing, and silviculture) on amphibian and reptile species richness and abundance by summarizing reported responses in the literature and by estimating effect sizes across studies for species richness in each land‐use type. We then used a multinomial model to classify species as natural habitat specialists, generalists, and disturbed habitat specialists and examined variation in effect sizes for each land‐use type according to habitat specialization categories. There were mixed conclusions from individual studies, some reporting negative, neutral, or positive effects of land use on species richness and total abundance. A large proportion of studies reported species‐specific effects of individual species abundance. However, in our analysis of effect sizes, we found a general trend of negative effects of land use on species richness. We also demonstrate that habitat associations of common species and species turnover can explain variation in the effect of land use on herpetofauna. Our review highlights the pervasive negative effects of common land uses on amphibians and reptiles, the importance of identifying groups vulnerable to land‐use change (e.g., forest‐associated species) in conservation studies, and the potential influence of disturbance‐associated species on whole assemblage analyses.  相似文献   

13.
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta‐analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). Meta‐Análisis de los Efectos de la Fragmentación del Bosque sobre las Interacciones Interespecíficas  相似文献   

14.
Habitat loss reduces species diversity, but the effect of habitat fragmentation on number of species is less clear because fragmentation generally accompanies loss of habitat. We compared four methods that aim to decouple the effects of fragmentation from the effects of habitat loss. Two methods are based on species-area relations, one on Fisher's alpha index of diversity, and one on plots of cumulative number of species detected against cumulative area sampled. We used these methods to analyze the species diversity of spiders in 2, 3.2 × 4 km agricultural landscapes in Southern Judea Lowlands, Israel. Spider diversity increased as fragmentation increased with all four methods, probably not because of the additive within-patch processes, such as edge effect and heterogeneity. The positive relation between fragmentation and species diversity might reflect that most species can disperse through the fields during the wheat-growing season. We suggest that if a given area was designated for the conservation of spiders in Southern Judea Lowlands, Israel, a set of several small patches may maximize species diversity over time.  相似文献   

15.
Abstract:  Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We specifically asked whether the processes structuring leaf-litter anuran assemblages in fragmented forests are the same as those in continuous forests. We analyzed anuran assemblages with respect to habitat characteristics, including fragmentation and degradation parameters. In comparison with continuous forests, species richness and diversity were lower and assemblage composition was altered in forest fragments. These changes seemed to be mainly caused by habitat degradation rather than forest fragmentation. Availability of aquatic sites for breeding, vegetation structure (including those variables indicating degradation), and leaf-litter cover had the most influence on the presence of single species. The comparatively small impact of fragmentation on anurans might be due to the location of the study area; it still possessed large tracts of continuous forest. These forest blocks may stabilize the regional rainforest climate and thus weaken the effects of fragmentation .  相似文献   

16.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

17.
Abstract: Connectivity among populations plays a crucial role in maintaining genetic variation at a local scale, especially in small populations affected strongly by genetic drift. The negative consequences of population disconnection on allelic richness and gene diversity (heterozygosity) are well recognized and empirically established. It is not well recognized, however, that a sudden drop in local effective population size induced by such disconnection produces a temporary disequilibrium in allelic frequency distributions that is akin to the genetic signature of a demographic bottleneck. To document this effect, we used individual‐based simulations and empirical data on allelic richness and gene diversity in six pairs of isolated versus well‐connected (core) populations of European tree frogs. In our simulations, population disconnection depressed allelic richness more than heterozygosity and thus resulted in a temporary excess in gene diversity relative to mutation drift equilibrium (i.e., signature of a genetic bottleneck). We observed a similar excess in gene diversity in isolated populations of tree frogs. Our results show that population disconnection can create a genetic bottleneck in the absence of demographic collapse.  相似文献   

18.
Considering genetic relatedness among species has long been argued as an important step toward measuring biological diversity more accurately, rather than relying solely on species richness. Some researchers have correlated measures of phylogenetic diversity and species richness across a series of sites and suggest that values of phylogenetic diversity do not differ enough from those of species richness to justify their inclusion in conservation planning. We compared predictions of species richness and 10 measures of phylogenetic diversity by creating distribution models for 168 individual species of a species-rich plant family, the Cape Proteaceae. When we used average amounts of land set aside for conservation to compare areas selected on the basis of species richness with areas selected on the basis of phylogenetic diversity, correlations between species richness and different measures of phylogenetic diversity varied considerably. Correlations between species richness and measures that were based on the length of phylogenetic tree branches and tree shape were weaker than those that were based on tree shape alone. Elevation explained up to 31% of the segregation of species rich versus phylogenetically rich areas. Given these results, the increased availability of molecular data, and the known ecological effect of phylogenetically rich communities, consideration of phylogenetic diversity in conservation decision making may be feasible and informative.  相似文献   

19.
Abstract:  A joint demographic and population genetics stage-based model for a subdivided population was applied to Gentiana pneumonanthe , an early successional perennial herb, at a regional (metapopulation) scale. We used numerical simulations to determine the optimal frequency of habitat disturbance (sod cutting) and the intensity of gene flow among populations of G. pneumonanthe to manage both population viability and genetic diversity in this species. The simulations showed that even small populations that initially had near-equal allele frequencies could, if managed properly through sod cutting every 6 to 7 years, sustain their high genetic variation over the long run without gene flow. The more the allele frequencies in the small populations are skewed, however, the higher the probability that in the absence of gene flow, some alleles will be lost and within-population genetic variation will decrease even under proper management. This implies that although local population dynamics should be the major target for management, regional dynamics become important when habitat fragmentation and decreased population size lead to the loss of local genetic diversity. The recommended strategy to improve genetic composition of small populations is the introduction of seeds or seedlings of nonlocal origin.  相似文献   

20.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号