首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
This study investigates the distributions and enrichments of trace metals in suspended and sinking particulate matter from southern East China Sea (ECS) north of Taiwan during the period April 1992 to April 1993. According to these results, concentration of suspended particulate matter in the inner shelf of southern China Sea, the upwellinginfluenced shelf break, and in Kuroshio water are 1.30 (surface)-4.2 (bottom) mg1-1, ca. 0.4 mg1-1 and 0.1-0.2 mg1-1, respectively, reflecting various influences of terrestrial inputs. A benthic nepheloid layer (BNL), apparently owing to resuspension of local and/or remote bottom sediments, formed over the shelf region. Temporal variations in trace metal contents and enrichments in suspended matter from the shelf region reflect the variation of metal inputs from Chinese rivers, particularly from the Changjiang runoff. the enriched metals are more likely to be derived from anthropogenic input, rather than from biological accumulation. in addition, a decrease in metal contents and an increase in salinity confirm the transport of suspended particulate metals from the East China Sea shelf to the open ocean. the feature of metal plume in the intermediate layer (550-800m) of Kuroshio water also verifies this occurrence. Moreover, the sinking particles collected from a sediment trap on the upper slope are relatively enriched in lithogenic matter and trace metals, suggesting the deposit of anthropogenic metals in the slope area.  相似文献   

3.
Suspended particulate matter dynamics in a particle framework   总被引:1,自引:0,他引:1  
Suspended particulate matter (SPM) dynamics in ocean models are usually treated with an advection–diffusion equation for one or more sediment size classes coupled to the hydrodynamical part of the model. Numerical solution of these additional partial differential equations unavoidably introduces numerical diffusion, i.e. in the case of sharp gradients the possible occurrence of artificial oscillations and non-positivity. A Lagrangian particle-tracking model has been developed to simulate short-term SPM dynamics. Modelling individual sediment particles allows a straightforward physical interpretation of the processes. The tracking of large numbers of individual and independent particles (up to 25 million in total in a single sediment class) can be achieved on high performance computer clusters, due to efficient parallelisation of particle tracking. The movement of the particles is described by a stochastic differential equation, which is consistent with the advection–diffusion equation. Here, the concentration profile is represented by a set of independent moving particles, which are advected according to the 3D velocity field, while the diffusive displacements of the particles are sampled from a random distribution, which is related to the eddy diffusivity field. To account for erosion a new parameterisation is proposed. Three numerical particle tracking schemes (EULER, MILSTEIN and HEUN) are presented and validated in idealised test cases. Finally, the particle tracking algorithms are applied to a realistic scenario, a severe winter storm in the East Frisian Wadden Sea (southern North Sea). The comparison with observations and an Eulerian SPM transport model seems to indicate a somewhat better fidelity of the Lagrangian approach.  相似文献   

4.
Abstract

This study investigates the distributions and enrichments of trace metals in suspended and sinking particulate matter from southern East China Sea (ECS) north of Taiwan during the period April 1992 to April 1993. According to these results, concentration of suspended particulate matter in the inner shelf of southern China Sea, the upwellinginfluenced shelf break, and in Kuroshio water are 1.30 (surface)–4.2 (bottom) mg1?1, ca. 0.4 mg1?1 and 0.1–0.2 mg1?1, respectively, reflecting various influences of terrestrial inputs. A benthic nepheloid layer (BNL), apparently owing to resuspension of local and/or remote bottom sediments, formed over the shelf region. Temporal variations in trace metal contents and enrichments in suspended matter from the shelf region reflect the variation of metal inputs from Chinese rivers, particularly from the Changjiang runoff. the enriched metals are more likely to be derived from anthropogenic input, rather than from biological accumulation. in addition, a decrease in metal contents and an increase in salinity confirm the transport of suspended particulate metals from the East China Sea shelf to the open ocean. the feature of metal plume in the intermediate layer (550–800m) of Kuroshio water also verifies this occurrence. Moreover, the sinking particles collected from a sediment trap on the upper slope are relatively enriched in lithogenic matter and trace metals, suggesting the deposit of anthropogenic metals in the slope area.  相似文献   

5.
Suspended particulate matter (SPM) is a key component regulating the biogeochemistry of natural and contaminant moieties in estuaries. Individual particle analyses can complement conventional bulk analyses of SPM, but are rarely undertaken. This study used scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS) of particles to quantify a range of elements in the reference estuarine sediment PACS-2. This approach was compared with a bulk SPM analysis based on inductively coupled plasma-atomic emission spectrometry (ICP-AES). The median concentrations of Al, Fe, Mg, and Ca for the two approaches were similar, and accuracy for both methods was good. SEM-EDS analysis was also satisfactory for K. Agreement was poorer for Mn and Ti, which were present at trace concentrations. Increasing the number of particles examined by SEM-EDS should improve the analysis. SEM-EDS analysis of SPM from the Tamar Estuary, UK, revealed marked geochemical differences between particle sub-populations.Selected article from 6th European Meeting on Environmental Chemistry, Belgrade, 2005, organised by Prof. Dr. Branimir Jovancicevic and the European Association of Chemistry and the Environment (ACE, www.research.plymouth.ac.uk/ace)  相似文献   

6.
水体中悬浮颗粒物对十溴二苯醚的吸附/解吸特性研究   总被引:2,自引:1,他引:1  
采用室内试验法,以沉积颗粒物和浮游植物颗粒(铜绿微囊藻和普通小球藻)作为水体中悬浮颗粒物(SPM),研究了SPM对十溴二苯醚(BDE-209)的吸附/解吸特性.结果表明,沉积颗粒物和浮游植物颗粒对BDE-209的吸附分别在1.5h和0.5h内达到最大,在3h内可以充分达到平衡;沉积颗粒物和浮游植物颗粒对BDE-209的吸附能力存在差异,这与颗粒物中有机质的浓度和类型有关;在实验浓度范围内,BDE-209在SPM上的吸附可用Freundlich等温吸附方程较好地拟合;解吸过程表现出一定的迟滞性,且沉积颗粒物比浮游植物颗粒物具有更明显的迟滞性;pH中性、温度20~30℃的水体有利于SPM对BDE-209的吸附.  相似文献   

7.
Results are presented from a series of parametric experimental and analytical studies of the behaviour of dense gravity currents along rotating, up-sloping, wedge-shaped channels. High resolution density profile measurements at fixed cross- and along-channel locations reveal the outflowing bottom gravity currents to adjust to quasi-steady, geostrophically-balanced conditions along the channels, with the outflow layer thickness and cross-channel interface slope shown to scale with the inlet Burger number for all experimental conditions tested. A general analytical solution to the classic rotating hydraulics problem has been developed under the assumption of inviscid, zero-potential-vorticity conditions to model dense water flow through a triangular constriction and thus simulate the vee-channel configurations under consideration. Predictions from this zero-PV model are shown to provide good overall quantitative agreement with experimental measurements obtained both under hydraulically-controlled conditions at the channel exit and for subcritical conditions generated along the channel length. Quantitative discrepancies between measurements and analytical predictions are attributed primarily to assumptions and limitations associated with the zero-PV modelling approach adopted, as well as the to the rapid adjustment in outflow characteristics as the channel exit is approached, as characterised by the along-channel variation in densimetric Froude number for the outflows.  相似文献   

8.
There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’ state dominated by phytoplankton. Eutrophication may cause a switch from the clear to the turbid state, if the P loading exceeds a critical value. The ecological processes governing this switch are covered by the ecosystem model PCLake, a dynamic model of nutrient cycling and the biota in shallow lakes. Here we present an extensive analysis of the model, using a three-step procedure. (1) A sensitivity analysis revealed the key parameters for the model output. (2) These parameters were calibrated on the combined data on total phosphorus, chlorophyll-a, macrophytes cover and Secchi depth in over 40 lakes. This was done by a Bayesian procedure, giving a weight to each parameter setting based on its likelihood. (3) These weights were used for an uncertainty analysis, applied to the switchpoints (critical phosphorus loading levels) calculated by the model. The model was most sensitive to changes in water depth, P and N loading, retention time and lake size as external input factors, and to zooplankton growth rate, settling rates and maximum growth rates of phytoplankton and macrophytes as process parameters. The results for the ‘best run’ showed an acceptable agreement between model and data and classified nearly all lakes to which the model was applied correctly as either ‘clear’ (macrophyte-dominated) or ‘turbid’ (phytoplankton-dominated). The critical loading levels for a standard lake showed about a factor two uncertainty due to the variation in the posterior parameter distribution. This study calculates in one coherent analysis uncertainties in critical phosphorus loading, a parameter that is of great importance to water quality managers.  相似文献   

9.
The Indian Bend Wash (IBW) flood-control project relies on a greenbelt to carry floods through Scottsdale, Arizona, USA. The greenbelt is characterized by a chain of shallow artificial lakes in a larger floodplain of irrigated turf, which has been protected from encroaching urban development. As such, this urban stream-floodplain complex can be divided into three subsystems: artificial lakes, channelized stream segments, and floodplain. We conducted experiments to evaluate which, if any, of these subsystems were important sites of denitrification, and to explore factors controlling denitrification rates. Denitrification enzyme activity (DEA) bioassays were conducted on sediments from eight lake and six stream segments as well as soil samples from eight floodplain transects. Mass-specific potential denitrification rates were significantly higher in lakes than in streams or floodplains. Nutrient limitation bioassays revealed that nitrate (NO3-) limited denitrification in lake sediments, a surprising finding given that NO3(-)-rich groundwater additions frequently raised lake NO3(-) concentration above 1 mg N/L. Experiments on intact lake cores suggested that denitrification was limited by the rate NO3(-) diffused into sediments, rather than its availability in overlying water. Floodplain denitrification was limited by water content, not NO3(-) or C, and irrigation of soils stimulated denitrification. We constructed a N budget for the IBW stream-floodplain complex based on our experimental results. We found that both lakes and floodplains removed large quantities of N, with denitrification removing 261 and 133 kg N ha(-1) yr(-1) from lake sediments and floodplain soils, respectively, indicating that lakes are hotspots for denitrification. Nevertheless, because floodplain area was >4.5 times that of lakes, floodplain soils removed nearly 2.5 times as much N as lake sediments. Given the desert's low annual precipitation, a finding that floodplain soils are active sites of denitrification might seem implausible; however, irrigation is common in urban landscapes, and it elevated annual denitrification in IBW. Based on our results, we conclude that construction of artificial lakes created hotspots while application of irrigation water created hot moments for denitrification in the stream-floodplain complex, demonstrating that management decisions can improve the ability of urban streams to provide critical ecosystem services like N retention.  相似文献   

10.
Spreading of oil on water in the surface-tension regime   总被引:1,自引:0,他引:1  
The third stage of oil spreading on water, in which surface-tension force promotes spreading against the resisting viscous effect, is investigated using a similarity solution in combination with an integral boundary-layer technique to solve the unidirectional oil-spreading dynamics problem in the last stage of spreading. The thin layer is assumed to be supplied by oil from a bulk boundary. Using a constitutive equation for oil-film surface tension versus oil-film thickness, analytical solutions near the bulk boundary and near the edge are developed. Using the asymptotic solutions to initiate integration, the differential equations for the oil thickness, oil velocity, and boundary-layer profiles are integrated starting from the leading edge and bulk boundary, which after matching provide a complete solution. The results for the spreading-law prefactors are found to differ by about 10 % from published theoretical results using the same constitutive equation. Using an empirical constitutive equation for oil-film surface tension versus distance from the bulk boundary leads to a spreading-law prefactor that is in excellent agreement with the published experimental result and published theoretical work providing and using the same empirical constitutive equation.  相似文献   

11.
Two model types are currently in use to model the thermal stratification cycle in lakes and reservoirs: the eddy diffusion and the mixed layer (or integral energy) approaches. Here the former is analysed and developments are proposed to remove the empiricisms previously implicit in these models. These discussions permit the reformulation of KH0 independently of current shear, together with an expression for Ri. The deduced formulae are in good agreement with observations. The newly formulated model (the University of Salford eddy diffusion model, U.S.E.D.) is subsequently used in simulations of lakes and reservoirs at different latitudes which are found to be in good agreement with observations without requiring inter-site calibration.  相似文献   

12.
Micro-scale thermal profile data were acquired in four lakes in northwest England and southeast Australia that ranged from a small, sheltered pond with a surface area of about 1 ha to more open lakes with surface areas of several square kilometres. These lakes provided a range of topographic and climatic contexts, basin morphologies and dominant macrophyte species. The data were acquired using two SCAMP profilers, one deployed in the open water and the other mounted on a field traverse deployed within the vegetated littoral zone. From these profile data, turbulence parameters were calculated. The results show the variation in the influence of vegetation on turbulence in the four lakes, which depends on the combination of wind stress, solar radiative forcing and macrophyte mechanical properties. In the sheltered pond, the vegetation alters the light climate within the water, thus reducing stratification and allowing weak, thermally-driven mixing. In the larger lakes, however, the primary action of the vegetation is to prevent surface-generated TKE from penetrating the water column, although this effect becomes less important as the plant separation increases. A simple mechanistic model, calibrated against the field data, suggests that the macrophyte mechanical properties are most important in determining the turbulent kinetic energy (TKE) profile. Increasing the number of turbulence-generating plants reduces the transport of surface-generated TKE into the deeper water, consistent with the field observations. The model suggests that solar forcing, as measured by the temperature gradient between the surface and bottom waters, is of less importance since the TKE profile is similar in runs with different gradients. Perhaps most surprisingly, the value of the surface-wind stress used in the model is not important, within the limitations of the model, as it does not change the TKE profile, except in a thin surface layer.  相似文献   

13.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   

14.
Environmental Fluid Mechanics - From the viewpoint of improving the visibility of water in small lakes and ponds, in a previous study, we treated turbidity-causing (TC) particles and adsorption...  相似文献   

15.
Vogt RJ  Rusak JA  Patoine A  Leavitt PR 《Ecology》2011,92(5):1104-1114
Interannual variation of 45 annually resolved time series of environmental, limnological, and biotic parameters was quantified (1994-2009) in six lakes within 52,000 km2 to test the hypothesis that influx of energy (E; as irradiance, heat, wind) varies synchronously among sites and induces temporal coherence in lakes and their food webs, whereas influx of mass (m; as water, solutes, particles) reduces synchrony because local catchments uniquely modify hydrologic inputs. Overall, 82% of parameters exhibited significant (P < 0.05) synchrony (S) estimated as mean pair-wise correlation of Z-transformed time series. Influx of E as atmospheric heat and irradiance was both more highly synchronous and less temporally variable (months-to-decades) than influx of m as summer precipitation, snow, or river discharge. Similarly, S of limnological parameters varied from 0.08 to 0.85, with variables known to be regulated by E influx (ice melt, gas solubility) up to twofold more coherent than those regulated by m inputs (organic solutes). Pairs of variables linked by simple direct mechanisms exhibited similar S values (air temperature and ice melt, nutrients and algae), whereas the coherence of other parameters (water temperature, mixing) was intermediate to that of multiple regulatory agents. Overall, aggregate measures of plankton density varied more coherently among lakes than did constituent taxa. These findings suggest that environmental variability is transmitted to most levels of aquatic ecosystems, but that the precise effects depend on whether E or m fluxes predominate, the coherence of each forcing mechanism, and the strength of linkages between exogenous forcing and lake response.  相似文献   

16.
Antarctic lakes with simple plankton ecosystems are believed to be sensitive biological indicators of climate change. Models of the physical environment, in particular the ice layer, support understanding of how the ecosystems respond to meteorological variables. This paper describes how data from a previously reported automatic measuring probe and meteorological data from Davis station were used to develop a detailed thermodynamic model of the ice layer on Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica. The general model structure is similar to a previously reported model of sea ice but with modifications specific to the Antarctic freshwater lake case informed by the data. The model inputs are atmospheric variables as well as water temperature, ice albedo and the radiation extinction coefficient for the ice. Heat and radiation fluxes at the ice–air and ice–water boundaries are calculated using equations chosen for their suitability for the Antarctic. In the case of shortwave radiation, equations were fitted to data from the automatic probe. Using the heat fluxes to establish boundary conditions, and incorporating the known thermodynamic properties of ice, the temperature profile within the ice and the resulting growth and melt of the ice can be calculated. The model uses a largely mechanistic approach, with most equations taken from established thermodynamic theories or empirical studies and only one adjustable parameter related to the sensible heat flux from the water, which is not easily calculated from the available data. It was found to accurately reproduce ice temperature and ice thickness data for the year 2003, with r2 = 0.89, n = 2005. Finally, the model was simplified to run with air temperature as the only input variable and was shown to perform well—this suggests that freshwater lake ice is affected more by air temperature than any other variable, and is therefore a useful indicator of climate change in its own right.  相似文献   

17.
水体中悬浮颗粒物对酞酸酯的吸附和解吸特性   总被引:5,自引:0,他引:5  
迟杰  康江丽 《环境化学》2006,25(4):405-408
选择水体中的悬浮颗粒物(SPM)--沉积颗粒物和浮游植物颗粒(铜绿微囊藻和普通小球藻),研究它们对邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DEHP)的吸附和解吸行为.结果表明,SPM对DBP 和DEHP的吸附在很短的时间内即可达到平衡,沉积颗粒物约为2h,浮游植物颗粒约为0.5h;SPM对DEHP的吸附能力明显大于DBP;不同SPM对同一种化合物的吸附能力差异较大,这与颗粒物中有机质的类型和结构有关;在实验浓度范围内,SPM对DBP和DEHP的吸附和解吸等温线具有较好的线性关系,解吸过程存在明显的迟滞现象,且沉积颗粒物比浮游植物颗粒物具有明显的迟滞效应,DBP比DEHP具有较大程度的迟滞效应.  相似文献   

18.
Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals—quartz, microcline, albite, and muscovite—with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil-suspension solution.  相似文献   

19.
SUMMARY

Reclaiming farmland from lakes in China in the 1950s damaged the water quality of many lakes. Tremendous efforts have been made since the late 1990s to restore vegetation around the damaged lakes. This paper examines water quality of Fuxian and Qilu Lakes and land-use characteristics within the two catchments in the high-altitude area of Yunnan Province, China. Landsat TM data acquired in 1989, 1994, 1999 and 2005 were used to extract land use and land cover (LULC) information. Measurements of five water quality indices (WQIs), BOD, COD, pH, TN and TP, for the same period of time were examined. The results showed that the area of residential and forest/shrub increased, whereas that of cropland and barren land decreased from 1989 to 2005 in both catchments. Qilu Lake was much more polluted than Fuxian Lake, and pollution worsened over time for both lakes. The differences in water quality between the two lakes were caused by differences in LULC composition and continued degradation in water quality was caused by intensive farming and urban sprawl. Unless the landscape is converted back to its pre-1950 composition and structure, water quality in both lakes cannot be significantly improved and will continue to threaten sustainable development in the region.  相似文献   

20.
The assessment of the ecosystem health of urban rivers and lakes is the scientific basis for their management and ecological restoration. This study developed a three-level indicator system for its assessment. The results indicated that: Zhonghai and Nanhai are in the state of transition from unhealthy to critical state and all the other lakes are in unhealthy states. Water environmental quality, structure and function of the aquatic ecosystem, and the structure of waterfront areas were the constraints. Nanhai was ranked as poor and the others were all ranked as very poor. However, the ecological environment of Zhonghai and Nanhai were better than the others, the sums of the degree of membership to the healthy state and critical state were all close to 0.6. and the restorations of these lakes were moderate. The sums of the degree of membership to the healthy state and critical state of the other lakes were under 0.3, as it was difficult to restore these lakes. Some suggestions on scientific management and ecological restoration of the six lakes were proposed: $`To control non-point pollution and to improve the water quality of six lakes and the water entering into these lakes; $aTo improve the hydrological conditions of six lakes; $bTo rehabilitate the aquatic ecosystem and waterfront areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号