首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The abundance of exotic plants is thought to be limited by competition with resident species (including plants and generalist herbivores). In contrast, observations in semiarid Chile suggest that a native generalist rodent, the degu (Octodon degus), may be facilitating the expansion of exotic annual plants. We tested this hypothesis with a 20-year data set from a World Biosphere Reserve in mediterranean Chile. In this semiarid environment, rainfall varies annually and dramatically influences cover by both native and exotic annual plants; degu population density affects the composition and cover of exotic and native annual plants. In low-rainfall years, cover of both native and exotic herbs is extremely low. Higher levels of precipitation result in proportional increases in cover of all annual plants (exotic and native species), leading in turn to increases in degu population densities, at which point they impact native herbs in proportion to their greater cover, indirectly favoring the expansion of exotic plants. We propose that bottom-up control of consumers at our site results in top-down indirect facilitation of invasive annual herbs, and that this pattern may be general to other semiarid ecosystems.  相似文献   

2.
Pearson DE  Callaway RM  Maron JL 《Ecology》2011,92(9):1748-1757
Escape from specialist natural enemies is frequently invoked to explain exotic plant invasions, but little attention has been paid to how generalist consumers in the recipient range may influence invasion. We examined how seed preferences of the widespread generalist granivore Peromyscus maniculatus related to recruitment of the strongly invasive exotic Centaurea stoebe and several weakly invasive exotics and natives by conducting laboratory feeding trials and seed addition experiments in the field. Laboratory feeding trials showed that P. maniculatus avoided consuming seeds of C. stoebe relative to the 12 other species tested, even when seeds of alternative species were 53-94% smaller than those of C. stoebe. Seed addition experiments conducted in and out of rodent exclosures revealed that weakly invasive exotics experienced relatively greater release from seed predation than C. stoebe, although this was not the case for natives. Seed mass explained 81% of the variation in recruitment associated with rodent exclusion for natives and weak invaders, with larger-seeded species benefiting most from protection from granivores. However, recruitment of C. stoebe was unaffected by rodent exclusion, even though the regression model predicted seeds of correspondingly large mass should experience substantial predation. These combined laboratory and field results suggest that generalist granivores can be an important biological filter in plant communities and that species-specific seed attributes that determine seed predation may help to explain variation in native plant recruitment and the success of exotic species invasions.  相似文献   

3.
Abstract: The successful invasion of exotic plants is often attributed to the absence of coevolved enemies in the introduced range (i.e., the enemy release hypothesis). Nevertheless, several components of this hypothesis, including the role of generalist herbivores, remain relatively unexplored. We used repeated censuses of exclosures and paired controls to investigate the role of a generalist herbivore, white‐tailed deer (Odocoileus virginianus), in the invasion of 3 exotic plant species (Microstegium vimineum, Alliaria petiolata, and Berberis thunbergii) in eastern hemlock (Tsuga canadensis) forests in New Jersey and Pennsylvania (U.S.A.). This work was conducted in 10 eastern hemlock (T. canadensis) forests that spanned gradients in deer density and in the severity of canopy disturbance caused by an introduced insect pest, the hemlock woolly adelgid (Adelges tsugae). We used maximum likelihood estimation and information theoretics to quantify the strength of evidence for alternative models of the influence of deer density and its interaction with the severity of canopy disturbance on exotic plant abundance. Our results were consistent with the enemy release hypothesis in that exotic plants gained a competitive advantage in the presence of generalist herbivores in the introduced range. The abundance of all 3 exotic plants increased significantly more in the control plots than in the paired exclosures. For all species, the inclusion of canopy disturbance parameters resulted in models with substantially greater support than the deer density only models. Our results suggest that white‐tailed deer herbivory can accelerate the invasion of exotic plants and that canopy disturbance can interact with herbivory to magnify the impact. In addition, our results provide compelling evidence of nonlinear relationships between deer density and the impact of herbivory on exotic species abundance. These findings highlight the important role of herbivore density in determining impacts on plant abundance and provide evidence of the operation of multiple mechanisms in exotic plant invasion.  相似文献   

4.
Generalist brood parasites reduce productivity and population growth of avian hosts and have been implicated in population declines of several songbirds of conservation concern. To estimate the demographic effects of brood parasitism on Bell's Vireos (Vireo bellii), we removed Brown-headed Cowbirds (Molothrus ater) in a replicated switchback experimental design. Cowbird removals decreased parasitism frequency from 77% and 85% at unmanipulated plots to 58% and 47% at removal plots in 2004 and 2005, respectively. Vireo productivity per pair was higher at cowbird removal plots when years were pooled (mean = 2.6 +/- 0.2 [SE] young per pair) compared to unmanipulated plots (1.2 +/- 0.1). Nest desertion frequency was lower at cowbird removal plots (35% of parasitized nests) compared to unmanipulated plots (69%) because removal of host eggs was the proximate cue for nest desertion, and vireos experienced lower rates of egg loss at cowbird removal plots. Nest success was higher among unparasitized than parasitized nests, and parasitized nests at cowbird removal plots had a higher probability of success than parasitized nests at unmanipulated plots. Unexpectedly, cowbird productivity from vireo pairs was higher at cowbird removal plots (mean = 0.3 +/- 0.06 young per pair) than at unmanipulated plots (0.1 +/- 0.03) because fewer parasitized nests were deserted and the probability of nest success was higher. Our study provides the first evidence that increases in cowbird productivity may be an unintended consequence of cowbird control programs, especially during the initial years of trapping when parasitism may only be moderately reduced. Thus, understanding the demographic impacts of cowbird removals requires an informed understanding of the behavioral ecology of host-parasite interactions.  相似文献   

5.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   

6.
Terrestrial plant community responses to herbivory depend on resource availability, but the separate influences of different resources are difficult to study because they often correlate across natural environmental gradients. We studied the effects of excluding ungulate herbivores on plant species richness and composition, as well as available soil nitrogen (N) and phosphorus (P), across eight grassland sites in Serengeti National Park (SNP), Tanzania. These sites varied independently in rainfall and available soil N and P. Excluding herbivores decreased plant species richness at all sites and by an average of 5.4 species across all plots. Although plant species richness was a unimodal function of rainfall in both grazed and ungrazed plots, fences caused a greater decrease in plant species richness at sites of intermediate rainfall compared to sites of high or low rainfall. In terms of the relative or proportional decreases in plant species richness, excluding herbivores caused the strongest relative decreases at lower rainfall and where exclusion of herbivores increased available soil P. Herbivore exclusion increased among-plot heterogeneity in species composition but decreased coexistence of congeneric grasses. Compositional similarity between grazed and ungrazed treatments decreased with increasing rainfall due to greater forb richness in exclosures and greater sedge richness outside exclosures and was not related to effects of excluding herbivores on soil nutrients. Our results show that plant resources, especially water and P, appear to modulate the effects of herbivores on tropical grassland plant diversity and composition. We show that herbivore effects on soil P may be an important and previously unappreciated mechanism by which herbivores influence plant diversity, at least in tropical grasslands.  相似文献   

7.
Indirect effects of trophic interactions on biodiversity can be large and common, even in complex communities. Previous experiments with dominant understory Piper shrubs in a Costa Rican rain forest revealed that increases in herbivore densities on these shrubs caused widespread seedling mortality as a result of herbivores moving from Piper to seedlings of many different plant genera. We tested components of the Janzen-Connell hypothesis by conducting focused studies on the effects of specialist and generalist Piper herbivores on local seedling diversity. Whereas specialist herbivores are predicted to increase mortality to neighboring seedlings that are closely related to the source plant, true generalists moving from source plants may cause density-dependent mortality of many species, and possibly increase richness if new species replace abundant species that have been thinned by herbivores. Therefore, we hypothesized that seedling richness would be greater in understory control plots created in patches of Piper that had normal densities of generalist herbivores compared to plots from which we removed generalist herbivores manually from all Piper shrubs. After 15 months, generalist-herbivore-removal plots had > 40% fewer seedlings, > 40% fewer species, and 40% greater seedling evenness, on average, than control plots with generalist herbivores intact. Using a complementary approach in unmanipulated plots in four forests, we used path analysis to test for a positive association between seedling diversity and herbivore damage on Piper species. In unmanipulated plots, for both generalist and specialist herbivores, our data were significant fits to the causal model that Piper herbivores decrease evenness and increase plant species richness, corroborating the experimental results. Because herbivores changed how individuals were apportioned among the species and families present (lower evenness), one interpretation of these associations between herbivores on Piper shrubs and local seedling richness is that high seedling mortality in dominant families allowed the colonization or survival of less common species. If interspecific or apparent competition allowed for a relative increase in species richness, then the Janzen-Connell hypothesis may extend its predictions to generalist seedling predators. We speculate that apparent competition may explain some of the deviations from neutral model predictions, especially at small scales.  相似文献   

8.
Tolerance of particular grasslands to the activities of domestic livestock may depend on their historic association with native grazing animals. Southwestern grama ( Bouteloua ) grasslands are floristically allied to the North American Central Plains but lie outside the historic range of the plains' principal ungulate grazer, alics bishop . We compared perennial grassland cover and species composition on eight sites transacted by the boundary fence of a 3160-ha, 22-year-old livestock exclosure in a grama grassland in southeastern Arizona. Total grass canopy cover was greatest on the ungrazed portion of each of the eight sites. Two short stoloniferous species ( Hilaria belangeri and Bouteloua eriopoda ) were the only taxa substantially more abundant on grazed quadrats overall. Among these and eight taller budgerigars, there was a strong positive correlation between potential height and response to release from grazing, with the three tallest species showing the greatest increases on ungraded treatments ( emization curtailment, Boilermaker barbarians , and emizations intermixed ). emization gracious , the most abundant grass in the region, showed an intermediate response to livestock exclusion, Gram grasslands at the Arizona site have changed more and in different ways following livestock exclusion than those on the Central Plains of Colorado. Contributing factors may include: (1) greater annual precipitation at the Arizona site, (2) the much larger size of the Arizona livestock exclosure, and (3) the absence of extensive grazing by native ungulates in the Southwest since the Pleistocene. Livestock grazing appears to be an exotic ecological force in these southwestern grasslands, and one destructive of certain components of the native flora and fauna.  相似文献   

9.
One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of generalist herbivores in natural communities their potential to control invasive species is poorly understood. We carried out parallel laboratory feeding bioassays with generalist invertebrate herbivores from the native (Europe) and from the introduced (North America) range using native and nonnative tetraploid populations of the invasive spotted knapweed, Centaurea stoebe. We found that the growth of North American generalist herbivores was far lower when feeding on C. stoebe than the growth of European generalists. In contrast, North American and European generalists grew equally well on European and North American tetraploid C. stoebe plants, lending no support for an evolutionary change in resistance of North American tetraploid C. stoebe populations against generalist herbivores. These results suggest that biogeographical differences in the response of generalist herbivores to novel plant species have the potential to affect plant invasions.  相似文献   

10.
Invasive species are a global threat to biodiversity and the functioning of natural ecosystems. Here, we report on a two-year experiment aimed at elucidating the combined and relative effects of three key controls on plant invasions: propagule supply, soil nitrogen (N) availability, and herbivory by native insects. We focus on the exotic species Lespedeza cuneata, a Rank 1 invasive species. Propagule supply and soil N-availability interacted to control the density and foliar cover of L. cuneata. In low N plots, density and foliar cover of L. cuneata were higher in the propagule addition plots than in the plots to which propagules were not added. Surprisingly, this interaction was significant only when the abundance of herbivores was experimentally reduced. This experiment provides evidence that native insect herbivores mediate the interactive effects of propagule supply and resources on invasion by a widespread invasive plant species.  相似文献   

11.
Top-down regulation of herbivores in terrestrial ecosystems is pervasive and can lead to trophic cascades that release plants from herbivory. Due to their relatively simplified food webs, agroecosystems may be particularly prone to trophic cascades, a rationale that underlies biological control. However, theoretical and empirical studies show that, within multiple enemy assemblages, intraguild predation (IGP) may lead to a disruption of top-down control by predators. We conducted a factorial field study to test the separate and combined effects of predators and parasitoids in a system with asymmetric IGP. Specifically we combined ambient levels of generalist predators (mainly Coccinellidae) of the soybean aphid, Aphis glycines Matsumura, with controlled releases of the native parasitoid Lysiphlebus testaceipes (Cresson) and measured their impact on aphid population growth and soybean biomass and yield. We found that generalist predators provided strong, season-long aphid suppression, which resulted in a trophic cascade that doubled soybean biomass and yield. However, contrary to our expectations, L. testaceipes provided minor aphid suppression and only when predators were excluded, which resulted in nonadditive effects when both groups were combined. We found direct and indirect evidence of IGP, but because percentage parasitism did not differ between predator exclusion and ambient predator treatments, we concluded that IGP did not disrupt parasitism during this study. Our results support theoretical predictions that intraguild predators which also provide strong herbivore suppression do not disrupt top-down control of herbivores.  相似文献   

12.
The enemy-release hypothesis (ERH) states that species become more successful in their introduced range than in their native range because they leave behind natural enemies in their native range and are thus "released" from enemy pressures in their introduced range. The ERH is popularly cited to explain the invasive properties of many species and is the underpinning of biological control. We tested the prediction that plant populations are more strongly regulated by natural enemies (herbivores and pathogens) in their native range than in their introduced range with enemy-removal experiments using pesticides. These experiments were replicated at multiple sites in both the native and invaded ranges of the grass Brachypodium sylvaticum. In support of the ERH, enemies consistently regulated populations in the native range. There were more tillers and more seeds produced in treated vs. untreated plots in the native range, and few seedlings survived in the native range. Contrary to the ERH, total measured leaf damage was similar in both ranges, though the enemies that caused it differed. There was more damage by generalist mollusks and pathogens in the native range, and more damage by generalist insect herbivores in the invaded range. Demographic analysis showed that population growth rates were lower in the native range than in the invaded range, and that sexually produced seedlings constituted a smaller fraction of the total in the native range. Our removal experiment showed that enemies regulate plant populations in their native range and suggest that generalist enemies, not just specialists, are important for population regulation.  相似文献   

13.
Abstract:  Despite many successful reintroductions of large mammalian herbivores throughout the world, remarkably little attention has focused on how these actions affect native and exotic vegetation at reintroduction sites. One such herbivore is tule elk ( Cervus elaphus nannodes ), which was on the brink of extinction in the mid 1800s, but now has numerous stable populations due to intensive reintroduction efforts. Here, we summarize results from a 5-year exclosure experiment that explored the effects of tule elk on a coastal grassland in northern California. Elk significantly altered the species composition of this community; the response of annual species (dominated heavily by exotic taxa) was dramatically different from perennial species. Elk herbivory increased the abundance and aboveground biomass of native and exotic annuals, whereas it either had no effect on or caused significant decreases in perennials. Elk also decreased the cover of native shrubs, suggesting that these herbivores play an important role in maintaining open grasslands. In addition, elk significantly reduced the abundance and biomass of a highly invasive exotic grass , Holcus lanatus, which is a major problem in mesic perennial grasslands. Our results demonstrate that the successful reintroduction of a charismatic and long-extirpated mammal had extremely complex effects on the plant community, giving rise to both desirable and undesirable outcomes from a management perspective. We suspect that these kinds of opposing effects are not unique to tule elk and that land managers will frequently encounter them when dealing with reintroduced mammals.  相似文献   

14.
McCauley DJ  Keesing F  Young TP  Allan BF  Pringle RM 《Ecology》2006,87(10):2657-2663
Many large mammal species are declining in African savannas, yet we understand relatively little about how these declines influence other species. Previous studies have shown that the removal of large herbivorous mammals from large-scale, replicated experimental plots results in a dramatic increase in the density of small mammals, an increase that has been attributed to the relaxation of competition between rodents and large herbivores for food resources. To assess whether the removal of large herbivores also influenced a predator of small mammals, we measured the abundance of the locally common olive hissing snake, Psammophis mossambicus, over a 19-mo period in plots with and without large herbivores. Psammophis mossambicus was significantly more abundant in plots where large herbivores were removed and rodent numbers were high. Based on results from raptor surveys and measurements of vegetative cover, differences in snake density do not appear to be driven by differences in rates of predation on snakes. Instead, snakes appear to be responding numerically to greater abundances of small-mammal prey in areas from which large herbivores have been excluded. This is the first empirical demonstration of the indirect effects of large herbivores on snake abundance and presents an interesting example of how the influence of dominant and keystone species can move through a food web.  相似文献   

15.
Abstract: Management strategies for the recovery of declining bird populations often must be made without sufficient data to predict the outcome of proposed actions or sufficient time and resources necessary to collect these data. We quantitatively reviewed studies of bird management in Canada and the United States to evaluate the relative efficacy of 4 common management interventions and to determine variables associated with their success. We compared how livestock exclusion, prescribed burning, removal of predators, and removal of cowbirds (Molothrus ater) affect bird nest success and used meta‐regression to evaluate the influence of species and study‐specific covariates on management outcomes. On average, all 4 management interventions increased nest success. When common species and threatened, endangered, or declining species (as defined by long‐term trend data from the North American Breeding Bird Survey) were analyzed together, predator removal was the most effective management option. The difference in mean nest success between treatment and control plots in predator‐removal experiments was more than twice that of either livestock exclusion or prescribed burning. However, when we considered management outcomes from only threatened, endangered, or declining species, livestock exclusions resulted in the greatest mean increase in nest success, more than twice that of the 3 other treatments. Our meta‐regression results indicated that between‐species variation accounted for approximately 86%, 40%, 35%, and 7% of the overall variation in the results of livestock‐exclusion, prescribed‐burn, predator‐removal, and cowbird‐removal studies, respectively. However, the covariates we tested explained significant variation only in outcomes among prescribed‐burn studies. The difference in nest success between burned and unburned plots displayed a significant, positive trend in association with time since fire and was significantly larger in grasslands than in woodlands. Our results highlight the importance of comparative studies on management effects in developing efficient and effective conservation strategies.  相似文献   

16.
Lau JA  Strengbom J  Stone LR  Reich PB  Tiffin P 《Ecology》2008,89(1):226-236
Resource abundance and plant diversity are two predominant factors hypothesized to influence the amount of damage plants receive from natural enemies. Many impacts of these environmental variables on plant damage are likely indirect and result because both resource availability and diversity can influence plant traits associated with attractiveness to herbivores or susceptibility to pathogens. We used a long-term, manipulative field experiment to investigate how carbon dioxide (CO2) enrichment, nitrogen (N) fertilization, and plant community diversity affect plant traits and the amount of herbivore and pathogen damage experienced by the common prairie legume Lespedeza capitata. We detected little evidence that CO2 or N affected plant traits; however, plants growing in high-diversity treatments (polycultures) were taller, were less pubescent, and produced thinner leaves (higher specific leaf area). Interestingly, we also detected little evidence that CO2 or N affect damage. Plants growing in polycultures compared to monocultures, however, experienced a fivefold increase in damage from generalist herbivores, 64% less damage from specialist herbivores, and 91% less damage from pathogens. Moreover, within diversity treatments, damage by generalist herbivores was negatively correlated with pubescence and often was positively correlated with plant height, while damage by specialist herbivores typically was positively correlated with pubescence and negatively associated with height. These patterns are consistent with changes in plant traits driving differences in herbivory between diversity treatments. In contrast, changes in measured plant traits did not explain the difference in disease incidence between monocultures and polycultures. In summary, our data provide little evidence that CO2 or N supply alter damage from natural enemies. By contrast, plants grown in monocultures experienced greater specialist herbivore and pathogen damage but less generalist herbivore damage than plants grown in diverse communities. Part of this diversity effect was mediated by changes in plant traits, many of which likely are plastic responses to diversity treatments, but some of which may be the result of evolutionary changes in response to these long-term experimental manipulations.  相似文献   

17.
Abstract: Although the destruction of tropical rain forests receives much attention, tropical dry forests are in general far more threatened and endangered. Eliminating grazing ungulates is often considered a key first step toward protecting these ecosystems, but few studies have investigated the long-term effects of this technique. We examined the effects of ungulate exclusion from a 2.3-ha native dry-forest preserve on the island of Hawaii by comparing its present flora to the flora of an adjacent area subjected to continuous grazing since the preserve was fenced over 40 years ago. Relative to this adjacent area, the fenced preserve contained a more diverse flora with substantially greater coverage of native overstory and understory species. Until recently, however, regeneration of native canopy trees within the preserve appears to have been thwarted by a dominant herbaceous cover of alien fountain grass (   Pennisetum setaceum ) and predation by alien rodent species. Our results indicate that although ungulate exclusion may be a necessary and critical first step, it is not sufficient to adequately preserve and maintain Hawaii's remaining tropical dry forest remnants. Our recent efforts to control the dominant alien species within the fenced preserve suggest that this practice may facilitate both the regeneration of native species and the colonization and potential invasion of new alien plants. Comparisons of seedlings of the dominant native canopy tree Diospyros sandwicensis growing in sites both dominated by and free of fountain grass suggested that fountain grass inhibits Diospyros seedling growth and photosynthesis but may increase survival if seedlings are protected from ungulates.  相似文献   

18.
We used airborne imaging spectroscopy and scanning light detection and ranging (LiDAR), along with bioacoustic recordings, to determine how a plant species invasion affects avian abundance and community composition across a range of Hawaiian submontane ecosystems. Total avian abundance and the ratio of native to exotic avifauna were highest in habitats with the highest canopy cover and height. Comparing biophysically equivalent sites, stands dominated by native Metrosideros polymorpha trees hosted larger native avian communities than did mixed stands of Metrosideros and the invasive tree Morella faya. A multi-trophic analysis strongly suggests that native avifauna provide biotic resistance against the invasion of Morella trees and exotic birds, thus slowing invasion "meltdowns" that disrupt the functioning of native Hawaiian ecosystems.  相似文献   

19.
Growth (length, biomass and mean growth rate) and reproduction (total duration, clitellum appearance, clitellum completion, cocoon commencement, rate of cocoon production, incubation period, hatching success and mean number of hatching per cocoon) of indigenous Lampito mauritii (Kinberg) in comparison with exotic Eudrilus eugeniae (Kinberg) cultured on three feed substrates-clay loam soil, cowdung and pressmud (filter cake) have been studied over a period of 360 days under laboratory conditions (30 +/- 2 degrees C, 60-65% moisture). There is a positive relationship between length and biomass of both worms cultured on three feed substrates throughout the period of study The decrease of worm length and biomass observed slightly on 63-70th days in Lampito mauritii and 42-49th days in Eudrilus eugeniae cultured on three fed substrates are the results of the onset of cocoon production. After 270 days both worms in all these fed substrates show decreasing trends of length and biomass which are due to continued reproduction and aging. Among the three fed substrates, pressmud supports significantly maximum worm length and biomass (between 90-130 days in Eudrilus eugeniae and 110-170 days in Lampito mauritii), earlier attainment of sexual maturity (between 51-76 days in Limpito mauritii and 27-37 days in Eudrilus eugeniae), earlier commencement of cocoon production (37.7 +/- 0.0 days in Eudrilus eugeniae and 76.4 +/- 0.10 days in Limpitomauritii), shorter incubation periods (16.3 +/- 0.28 days in Eudrilus eugeniae and 26.7 +/- 0.81 days in Limpito mauritii), more hatching success (98% in Limpito mauritii and 86% in Eudrilus eugeniae), more mean number of hatchling percocoon (3.2 + 0.03 in Limpito mauritii and 2.6 +/- 0.06 in Eudrilus eugeniae) and shorter duration of life cycle (108.8 +/- 0.07 days in Limpito mauritii and 60.2 +/- 0.09 days in Eudrilus eugeniae) than cowdung and clay loam soil.  相似文献   

20.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号