首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rowe RJ  Terry RC  Rickart EA 《Ecology》2011,92(6):1366-1375
Changes in climate and land use can impact natural systems across all levels of ecological organization. Most documented and anticipated effects consider species' properties, including phenologies, geographic distributions, and abundances. Responses of higher-level aggregate community or ecosystem properties have not been considered as they are assumed to be relatively stable due to compensatory dynamics and diversity-stability relationships. However, this assumption may not be as fundamental as previously thought. Here we assess stability in the aggregate properties of total abundance, biomass, and energy consumption for small-mammal communities in the Great Basin, using paired historical and modern survey data spanning nearly a century of environmental change. Results show marked declines in each aggregate property independent of spatial scale, elevation, or habitat type, and a reallocation of available biomass and energy favoring diet and habitat generalists. Because aggregate properties directly reflect resource availability, our findings indicate a regionwide decline in resources of 50% over the past century, which may signal a resource crisis. This work illustrates the power of using aggregate properties as indicators of ecological conditions and environmental change at broad spatial and temporal scales.  相似文献   

2.
Keitt TH  Fischer J 《Ecology》2006,87(11):2895-2904
The response of ecological communities to anthropogenic disturbance is of both scientific and practical interest. Communities where all species respond to disturbance in a similar fashion (synchrony) will exhibit large fluctuations in total biomass and dramatic changes in ecosystem function. Communities where some species increase in abundance while others decrease after disturbance (compensation) can maintain total biomass and ecosystem function in the face of anthropogenic change. We examined dynamics of the Little Rock Lake (Wisconsin, USA) zooplankton community in the context of an experimental pH manipulation conducted in one basin of the lake. A novel application of wavelets was used to partition patterns of synchrony and compensation by time scale. We find interestingly that some time series show both patterns of synchrony and compensation depending on the scale of analysis. Within the unmanipulated basin, we found subtle patterns of synchrony and compensation within the community, largely at a one-year time scale corresponding to seasonal variation. Within the acidified lake basin, dynamics shifted to longer time scales corresponding to the pattern of pH manipulation. Comparisons between pairs of species in different functional groups showed both strong compensatory and synchronous responses to disturbance. The strongest compensatory signal was observed for two species of Daphnia whose life history traits lead to synchrony at annual time scales, but whose differential sensitivity to acidification led to compensation at multiannual time scales. The separation of time scales inherent in the wavelet method greatly facilitated interpretation as patterns resulting from seasonal drivers could be separated from patterns driven by pH manipulation.  相似文献   

3.
4.
We investigated spatial patterns of synchrony among coral reef fish populations and environmental variables over an eight-year period on the Great Barrier Reef, Australia. Our aims were to determine the spatial scale of intra- and interspecific synchrony of fluctuations in abundance of nine damselfish species (genus Pomacentrus) and assess whether environmental factors could have influenced population synchrony. All species showed intraspecific synchrony among populations on reefs separated by < or =100 km, and interspecific synchrony was also common at this scale. At greater spatial scales, only four species showed intraspecific synchrony, over distances ranging from 100-300 km to 500-800 km, and no cases of interspecific synchrony were recorded. The two mechanisms most likely to cause population synchrony are dispersal and environmental forcing through regionally correlated climate (the Moran effect). Dispersal may have influenced population synchrony over distances up to 100 km as this is the expected spatial range for ecologically significant reef fish dispersal. Environmental factors are also likely to have synchronized population fluctuations via the Moran effect for three reasons: (1) dispersal could not have caused interspecific synchrony that was common over distances < or =100 km because dispersal cannot link populations of different species, (2) variations in both sea surface temperature and wind speed were synchronized over greater spatial scales (>800 km) than fluctuations in damselfish abundance (< or =800 km) and were correlated with an index of global climate variability, the El Ni?o-Southern Oscillation (ENSO), and (3) synchronous population fluctuations of most damselfish species were correlated with ENSO; large population increases often followed ENSO events. We recorded regional variations in the strength of population synchrony that we suspect are due to spatial differences in geophysical, oceanographic, and population characteristics, which act to dilute or enhance the effects of synchronizing mechanisms. We conclude that synchrony is common among Pomacentrus populations separated by tens of kilometers but less prevalent at greater spatial scales, and that environmental variation linked to global climate is likely to be a driving force behind damselfish population synchrony at all spatial scales on the Great Barrier Reef.  相似文献   

5.
Collins SL  Smith MD 《Ecology》2006,87(8):2058-2067
Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas.  相似文献   

6.
What can we learn from resource pulses?   总被引:1,自引:0,他引:1  
Yang LH  Bastow JL  Spence KO  Wright AN 《Ecology》2008,89(3):621-634
An increasing number of studies in a wide range of natural systems have investigated how pulses of resource availability influence ecological processes at individual, population, and community levels. Taken together, these studies suggest that some common processes may underlie pulsed resource dynamics in a wide diversity of systems. Developing a common framework of terms and concepts for the study of resource pulses may facilitate greater synthesis among these apparently disparate systems. Here, we propose a general definition of the resource pulse concept, outline some common patterns in the causes and consequences of resource pulses, and suggest a few key questions for future investigations. We define resource pulses as episodes of increased resource availability in space and time that combine low frequency (rarity), large magnitude (intensity), and short duration (brevity), and emphasize the importance of considering resource pulses at spatial and temporal scales relevant to specific resource-onsumer interactions. Although resource pulses are uncommon events for consumers in specific systems, our review of the existing literature suggests that pulsed resource dynamics are actually widespread phenomena in nature. Resource pulses often result from climatic and environmental factors, processes of spatiotemporal accumulation and release, outbreak population dynamics, or a combination of these factors. These events can affect life history traits and behavior at the level of individual consumers, numerical responses at the population level, and indirect effects at the community level. Consumers show strategies for utilizing ephemeral resources opportunistically, reducing resource variability by averaging over larger spatial scales, and tolerating extended interpulse periods of reduced resource availability. Resource pulses can also create persistent effects in communities through several mechanisms. We suggest that the study of resource pulses provides opportunities to understand the dynamics of many specific systems, and may also contribute to broader ecological questions at individual, population, and community levels.  相似文献   

7.
In marine ecosystems ecological and environmental conditions continuously change, possibly supporting the wide range of phytoplankton species coexisting in aquatic environments. Phytoplankton communities are not homogeneously distributed in the water column due to the spatial and temporal variability of turbulent mixing and the concurrent biological response. In this paper an individual-based model (Lagrangian method) simulating the basic physiology of two coexisting phytoplankton species has been developed. The species, sharing the same availability of light and nutrient resource, are characterized by different photo-physiological parameters. The spatial and temporal evolution of turbulent mixing is simulated introducing vertical profiles of measured eddy diffusivity. Three case studies have been examined to analyze the role of environment–individual interactions in determining bloom conditions for both the selected species. The organisms experience recurrent fluctuations of light, temperature, and nutrient concentration gradients, due to the turbulent mixing in the water column, which have significant effects on the growth of the phytoplankton species. In all the numerical experiments, the temporal and spatial variability of different forcings do not support the prevalence of one species over the other over the time scale typical of a phytoplankton bloom.A well mixed water column favours the growth of both the populations while a variable mixing regime limits their growth reducing the photophysiological differences between the species.  相似文献   

8.
Compensation and the stability of restored grassland communities.   总被引:1,自引:0,他引:1  
The relationship between community diversity and the stability of summed community biomass has been an area of great theoretical and empirical interest in basic ecology. In general, it has been found that the complementary/compensatory dynamics among species that comprise a community can stabilize aggregate measures of community biomass. Although the potential importance of diversity-stability relationships to restoration ecology has been recognized, to date there has been no quantification of the role these relationships play in increasing the persistence of restored communities in the face of altered disturbance regimes, climatic variability, and over the course of succession. In a large-scale experimental restoration of a California grassland community, aggregated abundance of restored grasses was more stable than were the individual species in response to disturbance, drought, and succession. Compensatory dynamics among the restored grass flora increased aggregate stability in response to natural and anthropogenic disturbances. Successful restorations must persist in the face of altered management and disturbance regimes, climactic variability, and over the course of succession. Incorporation of diversity-stability relationships into restoration plans will likely increase restoration success. This case study further demonstrates the relevance of community ecology theory to restoration ecology.  相似文献   

9.
Jablonski D  Sepkoski JJ 《Ecology》1996,77(5):1367-1378
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.  相似文献   

10.
Despite the important roles played by parasites in local population dynamics and community structure of marine ecosystems, there is a lack of information on the geographical variation in infection levels displayed by particular host–parasite species combinations. This study examines geographical variation in infection levels by the metacercarial stages of trematode parasites in crustacean and bivalve second intermediate hosts. Analyses were based on a dataset compiled from the literature, consisting of 164 local samples representing 49 host–parasite species pairs for crustaceans, and 338 entries representing 36 host–parasite species pairs for bivalves. The analyses indicate that for all measures of infection levels [prevalence (percentage of individuals infected), intensity (mean no. of metacercariae per infected individual), abundance (mean no. of metacercariae across all individuals in a sample)], there was statistically significant repeatability of infection values within host–parasite species pairs. However, it is only for values of intensity and abundance of infection in crustacean hosts that the repeatability was strong; this suggests that infection levels are specific properties of crustacean–trematode species pairs, showing significant consistency across localities despite spatial variation in abiotic and biotic conditions. Although the magnitude of variation in infection levels within parasite species pairs (measured as coefficients of variation) was independent of scale in crustacean hosts, infection levels in bivalves increased in variability at large (>100 km) spatial scales. These results suggest that there is a considerable geographical consistency in parasite load, especially in crustacean hosts, which should lead to consistent ecological and ecosystem effects of marine trematodes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
We assessed the relative roles of local environmental conditions and dispersal on community structure in a landscape of lakes for the major trophic groups. We use taxonomic presence-absence and abundance data for bacteria, phytoplankton, zooplankton, and fish from 18 lakes in southern Quebec, Canada. The question of interest was whether communities composed of organisms with more limited dispersal abilities, because of size and life history (zooplankton and fish) would show a different effect of lake distribution than communities composed of good dispersers (bacteria and phytoplankton). We examine the variation in structure attributable to local environmental (i.e., lake chemical and physical variables) vs. dispersal predictors (i.e., overland and watercourse distances between lakes) using variation partitioning techniques. Overall, we show that less motile species (crustacean zooplankton and fish) are better predicted by spatial factors than by local environmental ones. Furthermore, we show that for zooplankton abundances, both overland and watercourse dispersal pathways are equally strong, though they may select for different components of the community, while for fish, only watercourses are relevant dispersal pathways. These results suggest that crustacean zooplankton and fish are more constrained by dispersal and therefore more likely to operate as a metacommunity than are bacteria and phytoplankton within this studied landscape.  相似文献   

12.
Ecological theory suggests that environmental variability can promote coexistence, provided that species occupy differential niches. In this study, we focus on two questions: (1) Do allocation trade-offs provide a sufficient basis for niche differentiation in succulent plant communities? (2) What is the relative importance of different forms of environmental variability on species diversity and community composition? We approach these questions with a generic, individual-based simulation model. In our model, plants compete for water in a spatially explicit environment. Species differ in their size at maturity and in the allocation of carbon to roots, leaves and storage tissue. The model was fully specified with independent literature data. Model output was compared to characteristics of a species-rich community in the semi-arid Richtersveld (South Africa). The model reproduced the coexistence of plants with different sizes at maturity, the dominance of succulent shrubs, and the level of vegetation cover. We analyzed the effects of three forms of environmental variability: (a) temporal fluctuations in precipitation (rain and fog), (b) spatial heterogeneity of water supply due to run-on and run-off processes and (c) ‘rock pockets’ that limit root competition in space. The three types of variability had differential effects on diversity: diversity exhibited a strong hump-shaped response to temporal variation. Spatial variability increased diversity, with the strongest increase occurring at intermediate levels of temporal variability. Finally, rock pockets had the weakest effect, but contributed to diversity by providing refuges for small species, particularly at low temporal variability. The model thus shows that spatio-temporal variation of resource supply can maintain diversity over long time scales even in small systems, as is the case in the Richtersveld succulent communities. Trade-offs in allocation provide the basis for necessary niche differentiation. By describing resource competition between individual plants, our model provides a mechanistic basis for the link from species traits to community composition at given environmental conditions. It thereby contributes to an understanding of the forces shaping plant communities. Such an understanding is critical to reduce the threats environmental change poses to biodiversity and ecosystem services.  相似文献   

13.
Hillebrand H  Bennett DM  Cadotte MW 《Ecology》2008,89(6):1510-1520
The composition of communities is strongly altered by anthropogenic manipulations of biogeochemical cycles, abiotic conditions, and trophic structure in all major ecosystems. Whereas the effects of species loss on ecosystem processes have received broad attention, the consequences of altered species dominance for emergent properties of communities and ecosystems are poorly investigated. Here we propose a framework guiding our understanding of how dominance affects species interactions within communities, processes within ecosystems, and dynamics on regional scales. Dominance (or the complementary term, evenness) reflects the distribution of traits in a community, which in turn affects the strength and sign of both intraspecifc and interspecific interactions. Consequently, dominance also mediates the effect of such interactions on species coexistence. We review the evidence for the fact that dominance directly affects ecosystem functions such as process rates via species identity (the dominant trait) and evenness (the frequency distribution of traits), and indirectly alters the relationship between process rates and species richness. Dominance also influences the temporal and spatial variability of aggregate community properties and compositional stability (invasibility). Finally, we propose that dominance affects regional species coexistence by altering metacommunity dynamics. Local dominance leads to high beta diversity, and rare species can persist because of source-sink dynamics, but anthropogenically induced environmental changes result in regional dominance and low beta diversity, reducing regional coexistence. Given the rapid anthropogenic alterations of dominance in many ecosystems and the strong implications of these changes, dominance should be considered explicitly in the analysis of consequences of altered biodiversity.  相似文献   

14.
Holyoak M  Loreau M 《Ecology》2006,87(6):1370-1377
Neutral community models embody the idea that individuals are ecologically equivalent, having equal fitness over all environmental conditions, and describe how the spatial dynamics and speciation of such individuals can produce a wide range of patterns of distribution, diversity, and abundance. Neutral models have been controversial, provoking a rush of tests and comments. The debate has been spurred by the suggestion that we should test mechanisms. However, the mechanisms and the spatial scales of interest have never clearly been described, and consequently, the tests have often been only peripherally relevant. At least two mechanisms are present in spatially structured neutral models. Dispersal limitation causes clumping of a species, which increases the strength of intraspecific competition and reduces the strength of interspecific competition. This may prolong coexistence and enhance local and regional diversity. Speciation is present in some neutral models and gives a donor-controlled input of new species, many of which remain rare or are short lived, but which directly add to species diversity. Spatial scale is an important consideration in neutral models. Ecological equivalence and equal fitness have implicit spatial scales because dispersal limitation and its emergent effects operate at population levels, and populations and communities are defined at a chosen spatial scale in recent neutral models; equality is measured relative to a metacommunity, and this necessitates defining the spatial scale of that metacommunity. Furthermore, dispersal has its own scales. Thorough empirical tests of neutral models will require both tests of mechanisms and pattern-producing ability, and will involve coupling theoretical models and experiments.  相似文献   

15.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

16.
Melbourne BA  Chesson P 《Ecology》2006,87(6):1478-1488
Applying the recent developments of scale transition theory, we demonstrate a systematic approach to the problem of scaling up local scale interactions to regional scale dynamics with field data. Dynamics on larger spatial scales differ from the predictions of local dynamics alone because of an interaction between nonlinearity in population dynamics at the local scale and spatial variation in density and environmental factors over the regional population. Our systematic approach to scaling up involves the following five steps. First, define a model for dynamics on the local spatial scale. Second, apply scale transition theory to identify key interactions between nonlinearity and spatial variation that translate local dynamics to the regional scale. Third, measure local-scale model parameters to determine nonlinearities at local scales. Fourth, measure spatial variation. Finally, combine nonlinearity and variation measures to obtain the scale transition. Using field data for the dynamics of grazers and periphyton in a freshwater stream, we show that scale transition terms greatly reduce the growth and equilibrium density of the periphyton population at the stream scale compared to rock scale populations, confirming the importance of spatial mechanisms to stream-scale dynamics.  相似文献   

17.
The southwest monsoon on the west coast of India brings about dynamic changes in estuaries and coastal waters. The response of the meiofauna to monsoonal rain is obvious, but the impact of such environmental changes on the community structure of harpacticoid copepod species and their seasonality in the estuaries influenced by the tropical monsoon is poorly understood. In this study the spatial and temporal variability in abundance and community structure of meiobenthic copepods was investigated over an annual cycle (June 1983 to June 1984), in an estuary influenced by the tropical monsoon. Total meiofaunal abundance showed wide variations in space and time. Minimum and maximum densities were observed in the monsoon and pre-monsoon seasons, respectively. Quick recovery of harpacticoid populations in the early post-monsoon season indicated their recuperative power under adverse conditions. Of the 25 species recorded from lower, middle and upper reaches, eight comprised over 70% of the total copepod population. The peak and low occurrence of dominant species displayed striking correlations with the summer and rainy seasons, respectively. While other species were restricted in distribution, Stenhelia longifurca was recorded from all salinity regimes. The harpacticoid community was greatly influenced by the onset of the monsoon period, and their spatial and temporal variabilities were related with physico-chemical parameters and the variability of these parameters in the estuary.  相似文献   

18.
Belote RT  Jones RH  Hood SM  Wender BW 《Ecology》2008,89(1):183-192
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies across a wider range of scales often report positive relationships between native and nonnative species richness. This paradox has been attributed to the scale dependency of diversity-invasibility relationships and to differences between experimental and observational studies. Disturbance is widely recognized as an important factor determining invasibility of communities, but few studies have investigated the relative and interactive roles of diversity and disturbance on nonnative species invasion. Here, we report how the relationship between native and nonnative plant species richness responded to an experimentally applied disturbance gradient (from no disturbance up to clearcut) in oak-dominated forests. We consider whether results are consistent with various explanations of diversity-invasibility relationships including biotic resistance, resource availability, and the potential effects of scale (1 m2 to 2 ha). We found no correlation between native and nonnative species richness before disturbance except at the largest spatial scale, but a positive relationship after disturbance across scales and levels of disturbance. Post-disturbance richness of both native and nonnative species was positively correlated with disturbance intensity and with variability of residual basal area of trees. These results suggest that more nonnative plants may invade species-rich communities compared to species-poor communities following disturbance.  相似文献   

19.
20.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号