首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
智伟迪  涂耀仁  段艳平  唐钰  刘靳  张浩 《环境化学》2020,39(5):1225-1234
双氯芬酸(DFC)作为一种典型的新兴污染物,进入环境中难以被生物降解和转化,给人类健康造成潜在危害.本研究采用阳离子表面活性剂十六烷基三甲基溴化铵(HDTMAB)改性的蒙脱石(Mt)负载自制的纳米零价铁(nZVI),得到有机改性蒙脱石负载纳米零价铁(H-Mt+nZVI)复合材料,用于去除水中的DFC.利用X射线衍射仪(XRD)、比表面积分析仪(BET)对复合材料进行了表征.结果表明,在XRD图谱中2θ=44.6°附近出现了对应于Fe~0的衍射峰,证明nZVI被成功负载于Mt上;在0.5 CEC、1 CEC、2 CEC改性的Mt比表面积由49.40 m~2·g~(-1)下降到20.86、21.27、26.06 m~2·g~(-1),且Mt的孔径由8.01 nm增大到10.93、11.60、12.40 nm,主要由于nZVI负载到Mt表面或层间,扩充了部分吸附孔洞.同时,采用批次吸附实验比较了Mt、nZVI和H-Mt+nZVI复合材料对DFC的去除效果,研究结果表明,Mt和nZVI对DFC的去除率均低于20%,复合材料对DFC的去除率明显增大,可达90%以上.复合材料对DFC的吸附等温曲线符合Langmuir和Freundlich等温模型,吸附动力学更满足准一级动力学模型.在采用1倍阳离子交换量改性蒙脱石负载纳米零价铁(1 CEC Mt+nZVI)吸附DFC时,饱和吸附量可达1922.78 mg·kg~(-1),吸附平衡时间为30 min.说明H-Mt+nZVI复合材料可应用于水体新兴污染物DFC的快速去除.  相似文献   

2.
卤代硝基甲烷(HNMs)是一类典型的含氮消毒副产物(N-DBPs),具有较强的毒性,在饮用水、污水和泳池水中频繁检出.以葡萄糖、氯化铁和氯化铜为原料,通过碳化和煅烧,制备得到纳米零价铁、铜均匀负载的碳基复合材料,材料中的铁为体心立方的α-Fe~0,铜为面心立方体铜,颗粒呈球形且未发生明显的团聚,其平均粒径为18 nm,复合材料比表面积为417 m~2·g~(-1).铜的添加能显著加快复合材料去除三氯硝基甲烷(TCNM)的效率,当Fe与Cu的质量比为10∶1时,复合材料对水中的TCNM具有最高的去除效率和最快的去除速率.在材料投加量为10 mg·L~(-1)(以铁计),TCNM初始浓度为10μg·L~(-1),初始pH值为6.0,温度为25℃,且体系无氧、无余氯的条件下,60 min内可以去除99.7%的TCNM,去除TCNM的反应符合准一级反应动力学方程(R~2 0.9).复合材料在降解TCNM过程中会发生铁的流失,多次使用后的复合材料表面出现了铁的氧化产物,主要为Fe_3O_4和Fe_2O_3,经过二次煅烧,可以恢复复合材料的活性.  相似文献   

3.
纳米零价铁颗粒去除水中重金属的研究进展   总被引:7,自引:0,他引:7  
重金属是毒性大、难降解、易累积的环境污染物,纳米零价铁作为一种新型功能修复材料在去除水体和土壤中重金属方面有着广阔的应用前景.本文综述了纳米零价铁颗粒去除水中重金属的研究进展,包括纳米零价铁的常用制备方法及特性、去除效能、对不同重金属的去除机理以及发展前景和今后的研究方向,以期为该领域的深入研究提供借鉴并拓展新的思路.  相似文献   

4.
生物炭/铁复合材料(比如生物炭/纳米零价铁(nZVI),生物炭/硫化亚铁和生物炭/氧化铁),由于其优异的理化性质而被广泛应用于环境污染修复.本文首先总结了生物炭/铁复合材料的制备方法和表征手段,制备方法主要有热解法,水热碳化,沉淀和球磨法等.其次,通过综述生物炭/铁复合材料在有机污染和无机污染修复中的应用,阐明生物炭/铁复合材料的在环境修复中的应用机制以及复合材料中铁与生物炭的协同作用机理.总体而言,由于铁和生物炭之间的协同作用,提高了复合材料的比表面积,官能团和电子传递效率,从而增强生物炭/铁复合材料的性能.最后,提出了未来生物炭/铁复合材料的研究方向,进一步推动生物炭/铁复合材料在环境修复中的应用.  相似文献   

5.
以污染土壤中检出量较高的PCB118为目标污染物,采用银杏叶提取液绿色合成纳米铁材料(nZVI)、玉米秸秆制备生物炭(BC),将nZVI负载在BC表面合成生物炭负载纳米零价铁复合材料(BC-nZVI),利用制备的BC-nZVI复合材料催化活化过硫酸盐(PS)去除土壤中PCB118。主要探讨了在生物炭负载纳米零价铁活化过硫酸盐体系(BC-nZVI/PS)中复合材料BC-nZVI碳铁比及其投加量、PS浓度、pH值、温度等因素对PCB118去除速率的影响。结果表明,反应时间为24h时,碳铁比为2?1时BC-nZVI反应体系对土壤中PCB118去除效果优于其他3种比例。实验条件下,随着BC-nZVI的投加量由0.002 g增加到0.500 g,PS浓度由0.05 mol·L-1增至0.35 mol·L-1,温度由15℃升高到45℃,土壤中PCB118的去除率分别增加了32.4%、10.6%及14.7%。随着溶液初始pH值由3升到9,土壤中PCB118的去除率降低了11.4%。单因素实验数据显示,在BC-nZVI的投加量为0.500 g,PS浓度为0....  相似文献   

6.
壳聚糖稳定纳米铁去除地表水中Cr(Ⅵ)污染的影响因素   总被引:1,自引:0,他引:1  
以壳聚糖为稳定剂,制备纳米零价铁颗粒,TEM表征结果显示:其粒径分布范围为20—150 nm,平均粒径为82.4 nm.研究表明,壳聚糖稳定的纳米铁去除Cr(Ⅵ)的还原反应符合一级反应动力学方程.溶液中投加稳定剂壳聚糖,当壳聚糖浓度为150 mg.l-1时,80 min内表观一级动力学常数kobs约为空白溶液的2倍;干扰离子Ca2+,Mg2+,HCO3-和CO32-对壳聚糖稳定纳米铁去除Cr(Ⅵ)的批试验结果显示,Ca2+和Mg2+在80 min内使壳聚糖稳定纳米铁对Cr(Ⅵ)去除率分别降低了约20%和10%;HCO3-和CO32-的存在使去除率降低了约10%.  相似文献   

7.
为提高多孔碳微球对TBBPA的去除性能,采用氮掺杂、H2O2氧化和球磨对多孔碳微球进行表面改性,运用比表面积及孔隙度分析仪、傅里叶红外光谱(FT-IR)和X射线衍射仪(XPS)等方法表征改性前后多孔碳微球形貌、孔隙特征、官能团种类及含量和热稳定性等变化情况,通过吸附实验确定多孔碳微球的最佳改性方法,并探究吸附机理.结果表明,多孔碳微球、C-N、C-H2O2和C-球磨对TBBPA的最大吸附量分别为36.6、 43.1、 47.4、 58.35 mg·g-1.吸附过程符合准二级动力学模型,Langmuir模型能够更好的描述多孔碳微球对TBBPA的吸附过程,主要为单分子层均匀化学吸附.其中C-球磨对TBBPA的吸附性能最佳,最大吸附量和吸附速率分别提高了1.6倍和2.9倍;球磨改性极大提高了碳材料的比表面积和含氧官能团,增加了吸附污染物的活性位点,强化了氢键和π-π电子供受体作用,且受pH和腐殖酸(HA)的影响较小,拓宽了环境适用范围.本研究以期为廉价碳材料去除有机污染物性能提供理论...  相似文献   

8.
工业废水中重金属的存在威胁着环境和人类健康,有效去除环境中的重金属离子具有重要意义。论文简要介绍了近年来石墨基复合材料负载纳米零价铁(nZVI)去除废水中重金属离子的研究,探讨了多种石墨基负载nZVI复合材料对重金属离子的吸附特性和环境条件对吸附性能的影响因素,并对其未来的研究和应用进行了总结和展望。  相似文献   

9.
选取花生壳、稻草秸秆和玉米秸秆为原料制备不同种类生物炭,合成不同生物炭负载纳米零价铁复合材料(BC/n ZVI)。采用比表面积分析、扫描电镜等多种表征方法获得不同BC/n ZVI的物理化学和结构性质,测试BC/n ZVI对水溶液中典型有机氯农药γ-六六六的还原降解效果。结果表明,花生壳、稻草秸秆和玉米秸秆均在300℃制备条件下有较高的产率和较好的吸附效果;制备的BC/n ZVI颗粒呈球状结构,以花生壳BC/n ZVI分散性为最好;在水相实验中,添加BC/n ZVI对γ-六六六的去除效果优于单独添加生物炭或者纳米零价铁的效果;3种生物炭基材料中,花生壳BC/n ZVI对水相γ-六六六6 h的去除率为87.53%,反应体系中污染物总降解率达82.33%。  相似文献   

10.
胡一帆  王文兵  仵彦卿 《环境化学》2019,38(5):1074-1081
砷是一种有毒的类金属污染元素,许多工业场地土壤与地下水发现砷严重超标.本文对20 mT弱磁场促进零价铁去除砷的效果、影响因素和机理进行了实验室研究.结果表明,当初始pH=5—9时,外加弱磁场对零价铁除砷反应动力学影响显著,尤其在pH=7时,反应动力学速率常数从0.21 s~(-1)升高到1.14 s~(-1),增大了443%;2 h内去除率由30.9%提升至89.1%,提高了189%.在初始pH=7,更小粒径(5—9μm)的零价铁条件下,弱磁场促进零价铁除砷的效果更显著.由反应后剩余固体的SEM图可知,外加弱磁场下,零价铁颗粒表面的腐蚀产物明显增多.XPS分析结果表明,弱磁场环境下更多的氧气参与反应,促进了零价铁的腐蚀,生成更多的铁氧化物和氢氧化物,从而加速了砷在零价铁及其氧化物、氢氧化物表面的吸附和共沉淀.弱磁场可以显著促进零价铁对砷的去除,且无需外加能源和药剂投入,绿色环保,具有良好的发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号