首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

2.
Key goals of conservation are to protect both species and the functional and genetic diversity they represent. A strictly species-based approach may underrepresent rare, threatened, or genetically distinct species and overrepresent widespread species. Although reserves are created for a number of reasons, including economic, cultural, and ecological reasons, their efficacy has been measured primarily in terms of how well species richness is protected, and it is useful to compare how well they protect other measures of diversity. We used Proteaceae species-occurrence data in the Cape Floristic Region of South Africa to illustrate differences in the spatial distribution of species and evolutionary diversity estimated from a new maximum-likelihood molecular phylogeny. We calculated species richness, phylogenetic diversity (i.e., summed phylogenetic branch lengths in a site), and a site-aggregated measure of biogeographically weighted evolutionary distinctiveness (i.e., an abundance weighted measure that captures the unique proportion of the phylogenetic tree a species represents) for sites throughout the Cape Floristic Region. Species richness and phylogenetic diversity values were highly correlated for sites in the region, but species richness was concentrated at a few sites that underrepresented the much more spatially extensive distribution of phylogenetic diversity. Biogeographically weighted evolutionary diversity produced a scheme of prioritization distinct from the other 2 metrics and highlighted southern sites as conservation priorities. In these sites, the high values of biogeographically weighted evolutionary distinctiveness were the result of a nonrandom relation between evolutionary distinctiveness and geographical rarity, where rare species also tended to have high levels of evolutionary distinctiveness. Such distinct and rare species are of particular concern, but are not captured by conservation schemes that focus on species richness or phylogenetic diversity alone.  相似文献   

3.
Considering genetic relatedness among species has long been argued as an important step toward measuring biological diversity more accurately, rather than relying solely on species richness. Some researchers have correlated measures of phylogenetic diversity and species richness across a series of sites and suggest that values of phylogenetic diversity do not differ enough from those of species richness to justify their inclusion in conservation planning. We compared predictions of species richness and 10 measures of phylogenetic diversity by creating distribution models for 168 individual species of a species-rich plant family, the Cape Proteaceae. When we used average amounts of land set aside for conservation to compare areas selected on the basis of species richness with areas selected on the basis of phylogenetic diversity, correlations between species richness and different measures of phylogenetic diversity varied considerably. Correlations between species richness and measures that were based on the length of phylogenetic tree branches and tree shape were weaker than those that were based on tree shape alone. Elevation explained up to 31% of the segregation of species rich versus phylogenetically rich areas. Given these results, the increased availability of molecular data, and the known ecological effect of phylogenetically rich communities, consideration of phylogenetic diversity in conservation decision making may be feasible and informative.  相似文献   

4.
Endangered Cacti in the Chihuahuan Desert: I. Distribution Patterns   总被引:2,自引:0,他引:2  
We mapped the geographical distributions of 93 endangered species of cacti from the Chihuahuan Desert Region. We divided the region into grids of 30 minutes latitude by 30 minutes longitude and calculated species frequencies for each grid. The grids with the highest species richness values are aggregated in areas of moderate elevation, particularly towards the southeastern and, to a lesser extent, the eastern margins of the Chihuahuan Desert Region, in northern San Luis Potosí and the southern portions of Coahuila, Nuevo León, and Tamaulipas. This vast area constitutes the most important nucleus of cactus species concentration in the continent. Species richness decreases toward the western segment of the Chihuahuan Desert Region and from the Cuatro Ciénegas region to the north and northwest. Another important area is the Queretaroan-Hidalgoan Arid Zone, where several grids containing an important assemblage of endangered species occur. Climatic factors, such as minimum temperatures and mean annual precipitation, explain the current distribution patterns of these plants, and the recent Pleistocene climatic episodes appear to have played a determinant role in the existence of areas of high species concentration and in the proliferation of narrow endemics. Special actions are urgently needed to conserve the endangered Cactaceae of this region. We propose that a carefully selected network of small areas would be an appropriate approach for the conservation of these plants. But species richness cannot be taken as the sole criterion in the determination of protected areas. Additional criteria, such as degree of endemicity, degree of threat to species and areas, habitat diversity, and biogeographic congruence with other plant and animal groups, should be analyzed before these areas are selected. Propagation in botanical gardens using scientific criteria and commercial propagation would be additional methods of conservation.  相似文献   

5.
Abstract: Evaluating the degree of disturbance of any region to determine its relative importance for conservation purposes requires procedures that are relatively inexpensive and that yield accurate results fast. Because bats are abundant, diverse, and easy to sample, especially in the Neotropical rainforest, they fulfill several of the requirements of indicator species as identified in the literature. For 10 months we sampled bat communities in the Selva Lacandona in Chiapas, Mexico, at 15 sites representing five habitats. We also measured 10 variables representing vegetation structure and diversity at each site. With fuzzy-set techniques we produced a gradient classification of disturbance for the 15 sites based on the vegetation data. We explored the relationship between vegetation conditions, described as the membership degrees in the construct "fuzzy forest set" (the complementary fuzzy set of "disturbance"), and four bat community variables. Bat species richness, number of rare bat species, and the bat diversity index were positively correlated with the vegetation scores, and relative abundance of the most abundant bat species was negatively correlated with vegetation scores. A high number of phyllostomine species in a community is a good indicator of low levels of disturbance. Although a single indicator group will probably not be sufficient for decision-making processes in conservation, evaluating bat populations may be a good first step in assessing an area's conservation value, especially in rainforest regions.  相似文献   

6.
Abstract: Inventories of tree species are often conducted to guide conservation efforts in tropical forests. Such surveys are time consuming, demanding of expertise, and expensive to perform and interpret. Approaches to make survey efforts simpler or more effective would be valuable. In particular, it would be good to be able to easily identify areas of old‐growth forest. The average density of the wood of a tree species is closely linked to its successional status. We used tree inventory data from eastern Borneo to determine whether wood density can be used to quantify forest disturbance and conservation importance. The average density of wood in a plot was significantly and negatively related to disturbance levels, with plots with higher wood densities occurring almost exclusively in old‐growth forests. Average wood density was unimodally related to the diversity of tree species, indicating that the average wood density in a plot might be a better indicator of old‐growth forest than species diversity. In addition, Borneo endemics had significantly heavier wood than species that are common throughout the Malesian region, and they were more common in plots with higher average wood density. We concluded that wood density at the plot level could be a powerful tool for identifying areas of conservation priority in the tropical rain forests of Southeast Asia.  相似文献   

7.
Human Impacts on Regional Avian Diversity and Abundance   总被引:1,自引:0,他引:1  
Abstract: Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co‐occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem stress); and biodiversity peaks at intermediate levels of human influence (intermediate disturbance). To test these hypotheses, we compared anthropogenic land cover and housing units, as indices of human influence, with bird species richness and abundance across the Midwestern United States. We modeled richness of native birds with 12 candidate models of land cover and housing to evaluate the empirical evidence. To assess which species were responsible for observed variation in richness, we repeated our model‐selection analysis with relative abundance of each native species as the response and then asked whether natural‐history traits were associated with positive, negative, or mixed responses. Native avian richness was highest where anthropogenic land cover was lowest and housing units were intermediate based on model‐averaged predictions among a confidence set of candidate models. Eighty‐three of 132 species showed some pattern of association with our measures of human influence. Of these species approximately 40% were negatively associated, approximately 6% were positively associated, and approximately 7% showed evidence of an intermediate relationship with human influence measures. Natural‐history traits were not closely related to the direction of the relationship between abundance and human influence. Nevertheless, pooling species that exhibited any relationship with human influence and comparing them with unrelated species indicated they were significantly smaller, nested closer to the ground, had shorter incubation and fledging times, and tended to be altricial. Our results support the ecosystem‐stress hypothesis for the majority of individual species and for overall species diversity when focusing on anthropogenic land cover. Nevertheless, the great variability in housing units across the land‐cover gradient indicates that an intermediate‐disturbance relationship is also supported. Our findings suggest preemptive conservation action should be taken, whereby areas with little anthropogenic land cover are given conservation priority. Nevertheless, conservation action should not be limited to pristine landscapes because our results showed that native avian richness and the relative abundance of many species peaked at intermediate housing densities and levels of anthropogenic land cover.  相似文献   

8.
Abstract:  To better understand responses of reptiles and amphibians to forest fragmentation in the lowland Neotropics, we examined community and population structure of frogs and lizards in the fragmented landscape surrounding La Selva Biological Station in the Sarapiquí region of northeastern Costa Rica. We used diurnal quadrats and nocturnal transects to sample frogs and lizards in nine forest fragments (1–7 ha each) and La Selva (1100 ha). Species richness in all fragments combined was 85% of that found in La Selva with comparable sampling effort. Richness varied from 10 to 24 species among forest fragments, compared with 36 species at La Selva. Lizard density was higher and frog density was lower in forest fragments than in La Selva. Community composition varied among sites and by fragment size class, and species occurrence was nested with respect to fragment area. Isolation and habitat variables did not significantly affect species richness, composition, or nestedness. We classified 34% of species as fragmentation sensitive because they were absent or occurred at low densities in fragments. Nevertheless, the relatively high diversity observed in the entire set of fragments indicates that preserving a network of small forest patches may be of considerable conservation value to the amphibians and reptiles of this region.  相似文献   

9.
Abstract: The Everglades in southern Florida, U.S.A., is a major focus of conservation activities. The freshwater wetlands of the Everglades do not have high species richness, and no species of threatened aquatic animals or plants live there. We have, however, identified a distinctive ecological feature of the Everglades that is threatened by canal construction, draining, and nutrient enrichment from agricultural runoff. Compared to values reported from other freshwater systems, standing stocks of periphyton in relatively undisturbed areas of the Everglades were unusually high, and standing stocks of invertebrates and fish were unusually low. Averaging data gathered from nine sites and five sampling periods spanning 1 year, we found that periphyton standing crop was 88.2 g/m2 (ash-free dry mass), invertebrate standing stock was 0.64 g/m2 (dry mass), and fish standing stock was 1.2 g/m2 (dry mass of large and small species combined). We found that fish standing stocks were much higher in phosphorus-enriched sites than in nearby reference sites but that invertebrate standing stocks were similar in enriched and reference sites. Our results support the notion that oligotrophy is at least partially responsible for the low standing stocks of fish, but they also suggest that species interactions and a paucity of deep-water refugia are important. Anthropogenic eutrophication in Everglades marshes will lead to the loss of distinctive ecosystem features. A focus on species richness and "hot spots" of threatened species provides no basis for conservation of ecosystems like the Everglades. If oligotrophic ecosystems often have low species richness, they will be underrepresented in preservation networks based on some common criteria for establishing conservation priorities.  相似文献   

10.
With the intention of securing industry-free land and seascapes, protecting wilderness entered international policy as a formal target for the first time in the zero draft of the Post-2020 Global Biodiversity Framework under the Convention on Biological Diversity. Given this increased prominence in international policy, it is timely to consider the extent to which the construct of wilderness supports global conservation objectives. We evaluated the construct by overlaying recently updated cumulative human pressure maps that offer a global-scale delineation of industry-free land as wilderness with maps of carbon stock, species richness, and ground travel time from urban centers. Wilderness areas took variable forms in relation to carbon stock, species richness, and proximity to urban centers, where 10% of wilderness areas represented high carbon and species richness, 20% low carbon and species richness, and 3% high levels of remoteness (>48 h), carbon, and species richness. Approximately 35% of all remaining wilderness in 2013 was accessible in <24 h of travel time from urban centers. Although the construct of wilderness can be used to secure benefits in specific contexts, its application in conservation must account for contextual and social implications. The diverse characterization of wilderness under a global environmental conservation lens shows that a nuanced framing and application of the construct is needed to improve understanding, communication, and retention of its variable forms as industry-free places.  相似文献   

11.
Abstract:  Because complete species inventories are expensive and time-consuming, scientists and land managers seek techniques to alleviate logistic constraints on measuring species richness, especially over large spatial scales. We developed a method to identify indicators of species richness that is applicable to any taxonomic group or ecosystem. In an initial case study, we found that a model based on the occurrence of five indicator species explained 88% of the deviance of species richness of 56 butterflies in a mountain range in western North America. We validated model predictions and spatial transferability of the model using independent, newly collected data from another, nearby mountain range. Predicted and observed values of butterfly species richness were highly correlated with 93% of the observed values falling within the 95% credible intervals of the predictions. We used a Bayesian approach to update the initial model with both the model-building and model-validation data sets. In the updated model, the effectiveness of three of the five indicator species was similar, whereas the effectiveness of two species was reduced. The latter species had more erratic distributions in the validation data set than in the original model-building data set. This objective method for identifying indicators of species richness could substantially enhance our ability to conduct large-scale ecological assessments of any group of animals or plants in any geographic region and to make effective conservation decisions.  相似文献   

12.
Abstract:  The identification of conservation areas based on systematic reserve-selection algorithms requires decisions related to both spatial and ecological scale. These decisions may affect the distribution and number of sites considered priorities for conservation within a region. We explored the sensitivity of systematic reserve selection by altering values of three essential variables. We used a 1:20,000–scale terrestrial ecosystem map and habitat suitability data for 29 threatened vertebrate species in the Okanagan region of British Columbia, Canada. To these data we applied a reserve-selection algorithm to select conservation sites while altering selection unit size and shape, features of biodiversity (i.e., vertebrate species), and area conservation targets for each biodiversity feature. The spatial similarity, or percentage overlap, of selected sets of conservation sites identified (1) with different selection units was ≤40%, (2) with different biodiversity features was 59%, and (3) with different conservation targets was ≥94%. Because any selected set of sites is only one of many possible sets, we also compared the conservation value (irreplaceability) of all sites in the region for each variation of the data. The correlations of irreplaceability were weak for different selection units (0.23 ≤ r ≤ 0.67), strong for different biodiversity features ( r = 0.84), and mixed for different conservation targets ( r = 0.16; 0.16; 1.00). Because of the low congruence of selected sites and weak correlations of irreplaceability for different selection units, recommendations from studies that have been applied at only one spatial scale must be considered cautiously.  相似文献   

13.
Abstract:  Ecological change is often hard to document because of a lack of reliable baseline data. Several recent then-versus-now surveys of temperate forest and grassland communities demonstrate losses of local plant species, but most are based on data from a single site. We resurveyed understory communities in 62 upland forest stands in northern Wisconsin (U.S.A.) for which quantitative baseline data exist from 50 years ago. These stands are within a largely unfragmented region but vary in species composition and successional stage. We collected data on changes in (1) total and native species richness, (2) the ratio of exotic to native species, (3) the relative abundance of habitat generalists, and (4) community similarity among sites. We also compared how these rates of change varied over time. Over the past 50 years, native species density declined an average of 18.5% at the 20-m2 scale, whereas the ratio of exotic species to native species increased at 80% of all sites. Habitat generalists increased, and habitat specialists declined, accounting in part for an 8.7% rise in average similarity in species composition among sites. Most of these changes cannot be related to succession, habitat loss, or invasion by exotic species. Areas without deer hunting showed the greatest declines in native species density, with parks and research natural areas faring no better than unprotected stands. Animal-pollinated and animal-dispersed species also declined, particularly at unhunted sites. These results demonstrate the power of quantitative multistand data for assessing ecological change and identify overabundant deer as a key driver of community change. Because maintaining forest habitats alone fails to preserve plant diversity at local scales, local biotic simplification seems likely to continue in the region unless active efforts are taken to protect diversity.  相似文献   

14.
Abstract: Phylogenetic diversity measures rank areas for biodiversity conservation priorities based on information encoded in phylogenies (cladograms). The goal of these ranks for conservation is to consider as many factors as possible that provide additional taxic information, such as taxa richness, taxa distributional patterns, area endemicity, and complementarity between areas. At present there are many measures that consider phylogenetic information, including node-based, genetic-distance, and feature-based measures. We devised a modified phylogenetic node-based index that we call "taxonomic endemicity standardized weight," which considers not only the taxonomic distinctness of the taxa that inhabit a given area but their endemicity as well. Once the standardized weight of the taxonomic endemicity identifies the area of highest priority, complementarity can be used to identify the second area and so on. We used this node-based index to rank priority areas for conservation in southern South America, and we compared the results of our rankings to results based on other node-based indexes. Our index identified Santiago district, in Central Chile province, as the highest priority area for conservation, followed by Maule, Malvinas, and districts of Subantarctic province. Malvinas exhibits greater complementarity relative to Santiago than Maule does, however, so Malvinas is ranked second in priority. Indexes based on phylogenetic information measure the evolutionary component of biodiversity and allow one to identify areas that will ensure the preservation of evolutionary potential and phylogenetically rare taxa. The modified index we propose is sensitive to taxic distinctness and endemicity as well and allows information from diverse taxa to be combined (i.e., different cladograms). The use of complementarity allows for preservation of the maximum quantity of taxa in a minimal number of protected areas.  相似文献   

15.
Artificially creating social stimuli may be an effective tool for facilitating settlement by rare and/or declining species into suitable habitat. However, the potential consequences for other community members have not been explored and should be considered when evaluating the overall utility of using such management strategies. I report on nontarget, community-wide effects that occurred when manipulating social cues of two competitors that are species of concern in the western United States, the dominant Least Flycatcher (Empidonax minimus) and the subordinate American Redstart (Setophaga ruticilla). The experiment consisted of surveying birds during a pretreatment year, which allows for the control of baseline communities, and a treatment year, in which treatments were applied just prior to settlement by migratory birds. Treatments included broadcasting songs of flycatchers and redstarts and were compared to controls. While the addition of redstart cues did not significantly influence community structure, the addition of flycatcher cues reduced species richness of migratory birds by approximately 30%. This pattern was driven by an absence of local colonizations of small-bodied migrants to sites with added flycatcher cues, rather than by local extinctions occurring from manipulations. The artificial flycatcher stimuli were more responsible for declines in species richness than were changes in actual flycatcher densities. I conclude by identifying some fundamental issues that managers and conservation practitioners should weigh when considering simulating social cues for species conservation prior to implementation.  相似文献   

16.
Abstract:  Studies of the effects of logging on Lepidoptera rarely address landscape-level effects or effects on larval, leaf-feeding stages. We examined the impacts of uneven-aged and even-aged logging on the abundance, richness, and community structure of leaf-chewing insects of white ( Quercus alba L.) and black ( Q. velutina L.) oak trees remaining in unharvested areas by sampling 3 years before and 7 years after harvest. After harvest, white oaks in uneven-aged sites had 32% fewer species of leaf-chewing insects than control sites. This reduction in species richness may have resulted from changes in microclimate (reducing plant quality and/or changing leaf phenology) that affected a much larger total area of each site than did even-aged cuts. For black oak after harvest, species richness in uneven- and even-aged sites increased relative to levels before harvest. Harvesting did not alter total insect density or community structure in the unlogged habitat for either oak species with one exception: insect density on black oak increased in the oldest forest block. Community structure of herbivores of black and white oaks in clearcut gaps differed from that of oaks in intact areas of even-aged sites. Furthermore, both richness and total insect density of black oaks were reduced in clearcut gaps. We suggest that low-level harvests alter herbivore species richness at the landscape level. Treatment effects were subtle because we sampled untreated areas of logged landscapes, only one harvest had occurred, and large temporal and spatial variation in abundance and richness existed. Although the effects of logging were greater in uneven-aged sites, the effects of even-aged management are likely to increase as harvesting continues.  相似文献   

17.
Urban coastal wetlands and adjoining coves and embayments can provide habitat for significant numbers of waterbirds, despite being subject to high levels of stressors from human activities. Yet to date little emphasis has been placed on identifying these areas and prioritizing them for conservation. In this study I outline a three-step process to identify and prioritize local sites for conservation using waterbird abundance and diversity and an index of the risk to a site from marine development, and apply it to a series of urban coastal sites in two North Atlantic estuaries located in the northeast US. By combining waterbird abundance and species richness with the risk from marine development I generated a ranked list of sites with the highest listed sites having high bird diversity and low risk from development. From this list individual sites can be prioritized for conservation, and various protection scenarios can be evaluated and compared. For example, 7 of the top 10 ranked sites in Boston Harbor, combined with sites already protected under local, state, or federal statutes, represented over half of the total bird diversity in the Harbor. Similarly, in Narragansett Bay 6 of the top 10 sites when combined with sites already protected represent 48.8% of the Bay’s bird diversity. Formally protecting these sites, all of which are at relatively low risk from marine development, could result in the conservation of considerable waterbird habitat at low economic cost (i.e., from loss of development potential). Other ranking scenarios (by bird diversity alone, or by risk from marine development) were also evaluated and compared to the combined ranking. Identification of sites with high bird diversity and low risk from development could provide important information for local land acquisition groups and planning boards when considering options for the conservation of urban coastal habitats.  相似文献   

18.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   

19.
Abstract: To prioritize areas for conservation, biologists and managers need information on species diversity in threatened habitats. The resources available for such inventories remain severely limited, increasing the need to develop speedier ways to estimate the status of target habitats. We present a study of the use of such techniques in the highly fragmented oak savannas of southern Ontario, including selection of indicator taxa, use of rapid biodiversity assessment based on morphospecies, and analysis of community structure. We found that butterflies and skippers can be used to predict richness among Hymenoptera in the study sites, which is consistent with the hypothesis that these easily surveyed Lepidoptera are good candidates for indicator status. Richness values for hymenoptera morphospecies in these savanna remnants were strongly correlated with species richness scores as estimated by systematists, although nonspecialists tended to "split" species into more than one morphospecies. Finally, both the Hymenoptera and Lepidoptera communities in these oak savannas exhibited a high degree of nestedness, suggesting that local extinctions, mostly undocumented, are important determinants of the richness patterns across these widely separated savanna study sites. We found no evidence of significant spatial autocorrelation, probably because of the wide separation of study sites.  相似文献   

20.
为了解天津市不同地理位置土壤种子库物种组成和群落结构的变化,沿天津市设置"城区—城郊—远郊"的生态样带,在6个典型样地选取20个样方进行土壤种子库的采样工作并进行萌发试验。结果表明:土壤种子库的密度、物种组成及群落结构差异性明显,除趋势对应分析后分异出典型的城市土壤种子库、城郊土壤种子库、远郊土壤种子库3种类型。从远郊到城区,土壤种子库的密度递增,相似性指数也递增,而物种丰富度却递减。相比远郊地区,城区、城郊区土壤种子库物种丰富度损失率分别为66.67%、45.23%。城区因城市化水平较高及频繁的人为干扰致使土壤种子库物种呈现匀质化特点,物种多为一年生的耐踩踏草本。城郊区的多样性指数、生态优势度指数、均匀度指数最低,但是种子库密度较大,物种丰富,萌发种子中木本植物可观,适合用于进行植被恢复的试验研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号