首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Two wetland plant species, Phragmites australis and Oryza sativa, were grown in a glasshouse under hydroponics conditions. Enzyme extracts from different parts of the plants were used to determine the transformation rate of o,p-DDT, p,p-DDT and PCBs. The organic pollutants were directly spiked into the enzyme extracts, and samples were collected every 30 min and analyzed with a GC-ECD. Root extracts of P. australis readily degraded and transformed DDT and some PCB congeners with a low degree of chlorination. In contrast, crude extracts of O. sativa showed no appreciable degradation or transformation of DDT or PCBs. Inhibition studies indicated that the degradation and transformation of both DDT and PCBs by P. australis enzymes were partly mediated by peroxidase and the plant P-450 system. PCBs with a high degree of chlorination were highly resistant to transformation or degradation by plant enzymes. Both wetland plant species accumulated substantial quantities of the persistent organic chemicals but had different degradation capacities. The enzyme systems in P. australis were much more effective that those in rice in the degradation and transformation of the organic pollutants.  相似文献   

2.
Organochlorine pesticides (OCPs), viz. β-hexachlorocyclohexane (β-HCH), γ-HCH, aldrin, dieldrin, endrin, heptachlor, endosulfan-I, endosulfan-II, heptachlor endoepoxide, heptachlor exoepoxide, mirex, dicofol, o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT), dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyltrichloroethylene (DDE) and 12 other physicochemical parameters were measured in surface sediments from River Chenab during two sampling seasons (summer and winter, 2007) to evaluate spatial and temporal trends of sediment pollution. Hierarchical agglomerative cluster analysis identified three groups of sites based on spatial similarities in physicochemical parameters and OCP residual concentrations. Spatial discriminant function analysis (DFA) segregated 14 parameters, viz. dicofol, endosulfan-I, heptachlor endoepoxide, dieldrin, DDD, DDE, endosulfan-II, o,p′-DDT, p,p′-DDT, pH, electrical conductivity (EC), Cl−1, total P (%), and silt, which explained 96% of total variance between spatial groups. γ-HCH was the most frequently detected (63%) pesticide, followed by DDD (56%). The ratio of DDTs to their metabolites indicated current input and anaerobic biodegradation. Temporal DFA highlighted aldrin, heptachlor endoepoxide, Cl−1, total P, and EC as important variables which caused variations between summer and winter. DDTs were relatively more prevalent as compared to other OCPs in the sediments samples during both seasons. DDT metabolites were detected at greater frequencies and concentrations in winter, whereas DDT isomers were more prevalent in summer sediment samples. Factor analysis identified agricultural and industrial activities as major sources of sediment OCP contamination. Concentrations of γ-HCH, heptachlor endoepoxide, dieldrin, and DDTs (isomers and metabolites) in all sediment samples were well above interim sediment quality guidelines (ISQGs) and probable effect limits (PEL) given by Canadian Sediment Quality Guidelines (CSQGs).  相似文献   

3.
We investigated selected chlorinated pollutants (β-HCH, γ-HCH, DDDs, DDEs, o,p′-DDT, p,p′-DDT, heptachlor, aldrin, dieldrin, and endrin) in the Lahore and the Sialkot districts of Pakistan, using eggs of cattle egret (Bubulcus ibis) collected during May and June 2007. The pollutant with highest level and frequency was ΣDDT, followed by β-HCH, γ-HCH, heptachlor, aldrin, dieldrin, and endrin in descending order. The concentration(s) were significantly higher in Sialkot heronry for all the pollutants (except p,p′-DDT) than in Lahore. The values for DDTs, β-HCH, γ-HCH, and heptachlor were significantly higher (p < 0.05) in the egg(s) than in sediment(s) and in the chicks’ diet, due to biomagnification. Among DDTs analogues, p,p′-DDD was the major contaminant with >60 % of total DDT burden, reflecting the widespread aged as well as recent use of DDT as well as anaerobic degradation (DDD/DDE > 1 in many cases) in the nearby paddy soils. In few samples, p,p′-DDT/(DDD + DDE) > 0.5 suggested the recent emission patterns from surrounding contaminated areas of demolished DDT units and obsolete pesticide stores. The higher levels of HCHs (i.e., β-HCH) in the samples collected from Sialkot indicate exposure from long-term agricultural use. Overall, concentrations of all studied POPs were less than the threshold levels known to affect reproduction. Nevertheless, total DDTs and/or HCHs burdens in some eggs contained concentrations of greater than what would educe adverse effects on birds. This is among few studies on OCPs exposure to avian species, which provide the evidence of Pakistan’s contribution toward the Global POPs emission.  相似文献   

4.
For the duration of the war accident in former Yugoslavia, several industrial and military targets were burnt and damaged, resulting in a significant release of persistent organic pollutants. Locations heavily targeted in the attacks were later defined by UNEP as four “hot spots”: Kragujevac, Novi Sad, Pancevo and Bor. We analyzed concentration levels of pollutants collected in 2004 and 2005 in air samples from the city of Kragujevac, Serbia, following the war accident of 1999. Pollutants included polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexane (HCH), dichloro-diphenyl-trichloroethane (DDT), dichloro-diphenyl-dichloroethylene (DDE), dichloro-diphenyl-dichloroethane (DDD) and polychlorinated biphenyls (PCBs). We present results obtained during air sampling campaign conducted in July 2004 by the active sampling method; and during September 2004–June 2005 by the passive sampling method. Our findings show the occurrence of residual quantities of DDT, HCH, PCBs and PAHs in air samples. High levels of PCBs are probably due to the destruction of transformers during the war accident.  相似文献   

5.
The concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were determined in amniotic fluid of 200 pregnant women from the Cukurova region of Turkey. The concentrations of OCPs [hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), dichlorodiphenyl trichloroethane (p,p-DDT), and various metabolites], and different PCB congeners (28, 52, 101, 118, 138, 153, 180) were determined by gas chromatography with electron capture detection as follows: HCB 6.6 ± 4.7, ΣHCH 21.6 ± 14.2, ΣDDT 12.5 ± 7.5, and ΣPCBs 74.0 ± 54 ng mL?1. Correlations of maternal or gestational age and levels of OCPs and PCBs were not significant. The levels of these organochlorine compounds (OCs) were below detection limit for 5% of the samples, 80% contained more than one OC. This study illustrates that prenatal exposure of a fetus to OCs is prevalent in the Cukurova region.  相似文献   

6.
Currently, South Africa is designing a strategy for surface water protection involving organic contaminants such as dichlorodiphenyltrichloroethane (DDT), which is currently used for malaria control in mosquito-infested areas. Here, we demonstrate the successful use of an improved activated carbon technique using dichloromethane instead of chloroform, and slower leaching rate of 15 mL/min to quantify DDT and its metabolites in surface water. The recovery tests for 2,4′DDT, 2,4′DDD, 2,4′DDE, and 4,4′DDT, 4,4′DDD, 4,4′DDE ranged from 75 to 84% and 87 to 96%, respectively (DDE: dichlorodiphenyldichloroethylene, DDD: dichlorodiphenyldichloroethane). The main advantages of this technique over conventional liquid–liquid extractions are reduced amount of organic solvent, little sample preparation, and larger sample throughput. Because activated charcoal is fairly cheap, the technique can be routinely used to quantify and monitor DDT and its metabolites in surface water samples.  相似文献   

7.
Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r 2 > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.  相似文献   

8.
Spatial variability and temporal trends in concentrations of the organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), in surface soils around Beijing Guanting Reservoir (GTR) were studied in 2003 and 2007. Concentrations of the two OCPs in soils around GTR were generally less than reference values set by the Chinese government for the protection of agricultural production and human health. Among the OCPs, β-HCH and p, p′-DDE were the two predominant compounds. This result indicates that the HCH and DDT residues in soils were primarily from historical use. Based on kriging, a spatial distribution of HCH and DDT around the GTR was observed. Spatial variability indicated how HCH and DDT had been applied and been distributed in the past. Between 2003 and 2007, concentrations of HCH and DDT decreased more rapidly in orchard soils than those in fallow soils.  相似文献   

9.
A systematic survey of organochlorine pesticides (OCPs) including hexachlorocyclohexane isomers (α-HCH, β-HCH, γ-HCH, δ-HCH and ΣHCH) and dichlorodiphenyltrichloroethane metabolites (p,p′-DDT, p,p′-DDE, o,p′-DDT, p,p′-DDD and ∑DDT) in soils along the north coastal areas of the Bohai Sea, China, has been lacking. In this study, 31 representative surface soil samples were collected along the north coastal and riverine areas of the Bohai Sea to characterise the potential for adverse effects of ∑HCH, ∑DDT and their individual isomers and transformation products. Concentrations of ΣHCH and ΣDDT in soils ranged from less than the limit of detection (1 ng · g?1 dw (mean: 3.5 ng · g?1 dw) and2 ng · g?1 dw (mean: 1.7 × 101 ng · g?1 dw), respectively. Compared with studies of OCPs in soils from other locations, concentrations of HCHs and DDTs observed in this study were moderate. Concentrations of OCPs observed in soils were generally less than proposed reference values. HCH residues were a mixture of historical technical HCH and current lindane sources. The pattern of DDTs was consistent with historical releases of technical DDTs. Selected soil physicochemical properties did not explain the sorption and/or partitioning of HCHs or DDTs.  相似文献   

10.
以斑马鱼体内卵黄蛋白原(Vtg)作为雌激素污染物的生物标志物,比较研究了不同浓度2,4。DDT对成年斑马鱼生长、发育、繁殖以及体内Vtg含量的影响。结果表明,当水环境中p(2,4。DDT)为2和10μg·L-1时,斑马鱼产卵量和受精率与空白和溶剂对照组相比均显著下降(P〈0.05)。当水环境中P(2,4。DDT)为0.2、2和10μg·L-1时,斑马鱼肝脏指数与空白和溶剂对照组相比显著升高(P〈0.05);10μg·L。2,4。DDT处理组雄性斑马鱼体内Vtg含量显著高于空白和溶剂对照组(P〈0.05),而0.2、2和10μg·L~2,4。DDT处理组雌性斑马鱼体内Vtg含量均显著高于空白和溶剂对照组(P〈0.05),且随暴露浓度的增加而增大。SDS—PAGE检测及免疫印迹分析均显示雄鱼血液内出现Vtg特异条带,表明2,4。DDT对斑马鱼具有雌激素效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号