首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Certain groups of organisms are capable of improving their collective performance with experience. In a recent study, we demonstrated that, over successive emigrations, colonies of the ant Temnothorax albipennis are able to improve their collective performance by reducing the time taken to complete an emigration (Langridge et al., Behav Ecol Sociobiol 56:523–529, 2004). In this paper, by recording the performance of individually marked workers during repeated emigrations, we were able to analyse some of the ways in which time gains are achieved. We found that: (1) those transporters that also transported in the preceding emigration began to transport earlier in the current emigration and, in the majority of emigrations, transported more items than those transporters that had not transported in the preceding emigration; (2) the time that elapsed before the first item was transported into the new nest reduced over successive emigrations, and this first item was, in the majority of emigrations, carried by a transporter that had also transported in the preceding emigration; (3) the number of adults that were transported reduced over successive emigrations. Our results strongly suggest that the behaviour of transporters that also transported in a preceding emigration may be modified as a result of their experience and that, consequently, their efforts in the next emigration make a major contribution to the improved performance of the colony as a whole.  相似文献   

2.
Colonies of the ant Temnothorax albipennis improve their collective performance over successive emigrations (Langridge et al. Behav Ecol Sociobiol 56:523–529, 2004, Behav Ecol Sociobiol 62:447–456, 2008). Here, by analysing the performance of individual transporters (workers that carry the brood, queen and a proportion of adults), we investigate whether they spend less time at the old and new nests during repeated emigrations. Transporters expedited choosing and picking up brood items at the old nest and depositing them in the new nest. Such improvements were not associated with adult transport. Generally, when carrying brood items, but not when carrying adults, transporters visited several locations in the new nest before depositing them. Transporters did not interact with other adults when depositing brood items. Consequently, reductions in depositing times are the sum of time savings made by individual transporters. By contrast, transporters spent most time interacting with other adults before picking up brood items at the old nest. As the frequency of these interactions did not decline, we suggest the behaviours of interacting adults were modified in a way that hastened their completion. Thus, reductions in picking-up times probably occur because of time saved during interactions.  相似文献   

3.
Division of labour during colony emigration is widespread in ants. An important problem is how tasks are allocated during colony movement from one nest site to another. The generally favoured view is that emigrations are organised by a minority group of individuals, which either work unusually hard at tasks (elites) or have the exclusive task of carrying out the emigration (moving specialists). Five consecutive emigrations of a Leptothorax unifasciatus (Latr.) colony showed that the number of transporters, i.e. the individuals that took an active part in the emigration by transporting brood and ants, was smaller than it would have been if allocation of this task was random during each emigration. However, single emigrations of another three colonies, for which the spatial distribution and behaviour of the workers had been observed for a week prior to the emigration, demonstrated that the transporters did not form a homogeneous group. They differed in their spatial positions and tasks before the emigration. There was also no evidence that transporters worked harder or less hard than their nestmates before the emigration. Therefore, the individuals which carry out emigrations in L. unifasciatus colonies appear to be neither moving specialists nor elites. We propose that task allocation during emigrations of L. unifasciatus colonies is based on a feedback mechanism that involves learning.  相似文献   

4.
The evolution of life history characters, including parental care behaviors, depends on costs and benefits. When offspring can influence parental behaviors, parent-offspring conflict over parental care can occur, but only if these parental behaviors are costly. Mother burrower bugs (Sehirus cinctus) exhibit extended and complex care of offspring. Mothers guard eggs until hatching and then attend and provision offspring for approximately 2 weeks after hatching. Using four experimental treatments, we attempted to identify the costs associated with specific components of these behaviors. Under laboratory conditions, egg guarding increases inter-clutch interval, but provisioning does not appear to be very costly. We discuss additional ecological factors that may be important in mediating provisioning costs under natural conditions. Through analysis of individual maternal performance, we find no evidence for trade-offs between successive clutches. These data suggest that variation in overall condition may obscure variation in allocation strategies.Communicated by F. Trillmich  相似文献   

5.
Honey bee workers are able to distinguish queen-laid eggs from worker-laid eggs, and remove (‘police’) worker-laid eggs. The cue that police workers use is as yet unidentified but is likely to be a chemical signal. This signal benefits queens for it ensures their reproductive monopoly. It also benefits collective workers because it allows them to raise more closely related queen-laid males than the less-related sons of half sisters. Because both parties benefit from the egg-marking signal, it should be stable over evolutionary time. We show that Apis mellifera workers can distinguish queen-laid from worker-laid eggs of the dwarf honey bee A. florea, a phylogenetically distant species that diverged from the A. mellifera lineage 6–10 mya. However, A. mellifera workers are unable to distinguish worker-laid eggs of A. cerana, a much more recent divergence (2–3 mya). The apparent change in the egg-marking signal used by A. cerana may be associated with the high rates of ovary activation in this species.  相似文献   

6.
Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker life span in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their life span in nature. We present seven hypotheses concerning how selection could favor extended worker life span through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker life span could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker life span and its relationship to colony fitness and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker life span in ants.  相似文献   

7.
Summary. Colonies of two species of Metapone (M. madagascarica, M. new species.) were collected in Madagascar and established in laboratory nests. It could be demonstrated that both species are specialist predators of termites (Cryptotermes kirbyi). During hunting the ants sting the termites and thereby paralyze and preserve the prey alive. In this way prey can be stored in the ant nest for extended periods. During foraging and colony emigrations the ants lay chemical trails with poison gland secretions. Among the seven compounds identified in the venom only methyl pyrrole-2-carboxylate elicits trail following behavior in both Metapone species. Received 11 February 2002, accepted 23 February 2002.  相似文献   

8.
To gain additional territory while defending existing territory, animals must acquire and use information regarding resource characteristics and competitive pressure. For social organisms like ants, individual workers have experiences to acquire information, but territory establishment is a colony level behavior. Colony behavior, in turn, affects community structure. Here, I investigate how an individual ant’s previous experience affects its future foraging behavior and how individual behaviors can scale up to community territorial structure for two coexisting Formica species. To do this, I combine a field survey, a multi-agent computer simulation, and a manipulation experiment. The field survey shows that workers of both species co-occur on many trees early in the season, but ants on trees become segregated by species as the season progresses. The simulation demonstrates how this segregated spatial distribution can result from ants using a foraging strategy in which individuals show a preference for foraging sites based on previous experience. The experiment suggests that these ants are indeed capable of experience-based foraging behavior; ants preferentially return to sites where they have had positive experiences and avoid sites where they have had negative experiences. Results from this study suggest that spatially explicit information can be collected and stored by individuals to facilitate colony territorial structure, and that future investigations of community territory formation should include effects of individual previous experience.  相似文献   

9.
Repeated pathogen exposure is a common threat in colonies of social insects, posing selection pressures on colony members to respond with improved disease-defense performance. We here tested whether experience gained by repeated tending of low-level fungus-exposed (Metarhizium robertsii) larvae may alter the performance of sanitary brood care in the clonal ant, Platythyrea punctata. We trained ants individually over nine consecutive trials to either sham-treated or fungus-exposed larvae. We then compared the larval grooming behavior of naive and trained ants and measured how effectively they removed infectious fungal conidiospores from the fungus-exposed larvae. We found that the ants changed the duration of larval grooming in response to both, larval treatment and their level of experience: (1) sham-treated larvae received longer grooming than the fungus-exposed larvae and (2) trained ants performed less self-grooming but longer larval grooming than naive ants, which was true for both, ants trained to fungus-exposed and also to sham-treated larvae. Ants that groomed the fungus-exposed larvae for longer periods removed a higher number of fungal conidiospores from the surface of the fungus-exposed larvae. As experienced ants performed longer larval grooming, they were more effective in fungal removal, thus making them better caretakers under pathogen attack of the colony. By studying this clonal ant, we can thus conclude that even in the absence of genetic variation between colony members, differences in experience levels of brood care may affect performance of sanitary brood care in social insects.  相似文献   

10.
Mutualistic relationships between ants and aphids are well studied but it is unknown if aphid-attending ants place a greater relative importance on defending aphids from aphid-predators or from competing ant colonies. We tested the hypothesis that aphid-attending ants defend their aphids against aphid-predators more aggressively than against ants from neighboring colonies. We conducted introduction trials by placing an individual non-predatory insect, an aphid-predator, or a foreign conspecific ant on the leaf of a resident ant. We found that ants did not attack non-predatory insects, but did attack competing ants and aphid-predators. When we presented resident ants with both the threats (i.e., predator and competitor) at the same time, residents always attacked potential competitors as opposed to aphid-predators. We suggest this behavior may reduce the likelihood of raids by neighboring colonies. Ants appear to balance both the energetic costs of making an attack and the costs associated with losing aphids to a predator, against the benefits of signaling their defensive ability to rivals and/or preventing rivals from gaining knowledge of a potential food resource.  相似文献   

11.
Solitary foragers can balance demands for food and safety by varying their relative use of foraging patches and their level of vigilance. Here, we investigate whether colonies of the ant, Formica perpilosa, can balance these demands by dividing labor among workers. We show that foragers collecting nectar in vegetation near their nest are smaller than are those collecting nectar at sites away from the nest. We then use performance tests to show that smaller workers are more likely to succumb to attack from conspecifics but feed on nectar more efficiently than larger workers, suggesting a size-related trade-off between risk susceptibility and harvesting ability. Because foragers that travel away from the nest are probably more likely to encounter ants from neighboring colonies, this trade-off could explain the benefits of dividing foraging labor among workers. In a laboratory experiment, we show that contact with aggressive workers results in an increase in the mean size of recruits to a foraging site: this increase was not the result of more large recruits, but rather because fewer smaller ants traveled to the site. These results suggest that workers particularly susceptible to risk avoid dangerous sites, and suggest that variation in worker size can allow colonies to exploit profitably both hazardous and resource-poor patches.Communicated by L. Sundström  相似文献   

12.
How social insect colonies behave results from the actions of their workers. Individual variation among workers in their response to various tasks is necessary for the division of labor within colonies. A worker may be active in only a subset of tasks (specialist), perform all tasks (elite), or exhibit no particular pattern of task activity (idiosyncratic). Here we examine how worker activity is distributed among and within tasks in ants of the genus Temnothorax. We found that workers exhibited elitism within a situation, i.e., in particular sets of tasks, such as those associated with emigrations, nest building, or foraging. However, there was weak specialization for working in a particular situation. A few workers exhibited elitism across all situations, i.e., high performance in all tasks in all situations. Within any particular task, the distribution of activity among workers was skewed, with few ants performing most of the work and most ants performing very little of the work. We further found that workers persisted in their task preference over days, with the same individuals performing most of the work day after day. Interestingly, colonies were robust to the removal of these highly active workers; they were replaced by other individuals that were previously less active. This replacement was not short-lived; when the removed individuals were returned to the colony, not all of them resumed their prior high activity levels, and not all the workers that replaced them reduced their activity. Thus, even though some workers specialize in tasks within a particular situation and are persistent in performing them, task allocation in a colony is plastic and colonies can withstand removal of highly active individuals.  相似文献   

13.
Summary Leptogenys processionalis Jerdon forages on termites and other arthropods by raiding in branched trails. Growth and topology of these search trails were studied using Horton's (1945) technique orginally developed to analyze the branching pattern of river systems. Branching was always a bifurcating process and branches emerged symmetrically on either side of the main trail. Branching coefficients (R b ) were similar to those of a few biological branching systems, such as lungs, that are considered to be non-random in their branching pattern. The R b values indicated that the rate of branching and growth of trails remained constant within each foraging bout. The length of trails became shorter as they grew out and branched. The branching process was a function of the spatial separation of food patches in the terminal search field. Ants in the terminal search field send signals on encountering prey. The recruits cannot discriminate between these signals if they arise from two food patches situated <40 cm from each other, and hence converge on them in a single trail. However, discrimination is possible when food patches are >40 cm apart and hence recruits congregate on them separately in two trails, resulting in branching. Thus, the branching process is a result of independent decision by the ants conforming to certain simple rules and not a collective decision of the whole colony. We argue that mass recruiting ants selected to forage by branching pattern of trails because of its efficiency over other topologies (Stevens 1973) in minimizing the cost of travel, both from the nest to the food patches and between food patches. Further, the branch angles appear to be a trade-off to minimize travel cost and the resistance to the flow of ants comprising the column.Offprint requests to: T. Veena  相似文献   

14.
According to Huey and Slatkin’s [Q Rev Biol 51:363–384, 1976] cost–benefit model of behavioural thermoregulation, lizards should adjust their thermoregulatory strategy between active thermoregulation and thermoconformity (no thermoregulation) according to the costs (time and energy spent thermoregulating, exposure to predators), benefits (optimised physiological performance) and thermal quality of environment associated with a given situation. However, Gilchrist’s [Am Nat 146:252–270, 1995] model of thermal specialisation suggests that apparently costly mechanisms of behavioural thermoregulation can greatly increase fitness if the optimal body temperature is achieved. Field studies of ectotherm thermoregulatory strategies under extreme cold conditions and experiments testing the effects of cool environments on thermoregulatory behaviour are surprisingly scarce. We conducted laboratory experiments to test if common lizards Zootoca vivipara (an active thermoregulator in the field) are able to switch between active thermoregulation and thermoconformity in response to different thermal environments. We found that lizards in treatments with an opportunity to reach their preferred body temperature thermoregulated accurately, maintained their level of daily activity and improved their body condition considerably. In contrast, lizards in the treatment where the preferred body temperature could not be reached became thermoconformers, decreased their daily activity (except for gravid females) and did not increase their body condition. Our results show that lizards can indeed change their thermoregulatory strategy but stress that maintaining the preferred body temperature and, thus, optimising the physiological performance have high priority in lizard behaviour.  相似文献   

15.
Central-place foraging theory has been unable to explain the load selection behavior of leaf-cutting ants (Atta spp., Attini: Formicidae). We suggest that this is due to incomplete consideration of the sequence of behaviors involved in resource acquisition by these ants. Unlike most central-place foragers, leaf-cutting ants do not return to their nests with food. Instead, the leaf fragments they gather must be processed within the nest to convert them to substrate for fungal gardens. We have shown previously that leaf fragment size affects the rate of distribution and processing of leaf tissue inside laboratory nests of Atta colombica. Including these tasks in the calculation of foraging rate may help explain load selection and other features of central-place foraging by Atta colonies. Here we develop a mathematical model of the complete sequence of external and internal tasks that lead to addition of substrate to fungal gardens. Using realistic parameter values, the leaf fragment sizes predicted to maximize a colony's rate of foraging in this broad sense correspond well with the mean fragment sizes actually collected by Atta colonies in the field. The optimal fragment size for global performance in the model is below the size that would maximize the delivery rate by above-ground foragers. The globally optimal size also fails to maximize the rate of either fragment distribution or fragment processing within the nest. Our results show how maximum collective performance of an ensemble of linked tasks may require behavior that would appear suboptimal in a piecemeal analysis of tasks.  相似文献   

16.
In this paper, we used the food-correlated search behavior observed in foraging ants returning to a previously rewarding site to study information transfer during recruitment in the ant Lasius niger. We hypothesized that, if information about the characteristics of the food is conveyed during recruitment, food-correlated search tactics should also be observed in recruited workers. Our results show that the characteristics of the trajectories of recruited workers are comparable to those of scout ants returning to a site or prior food find and depend more on the type (prey/sugar) than on the quality (sugar concentration) of the food discovered by the scouts. Independent of sugar concentration, workers recruited to a source of sugar search with a greater sinuosity than workers recruited to a prey. Experimental manipulation of the recruitment signals (chemical trail and contact between ants) shows that the trail pheromone laid down by recruiting ants does not play a role in the modification of trajectory sinuosity. This change appears to be most likely triggered by a direct perception of the residue of sugar smeared on the body of the recruiting workers coming back to the nest.Communicated by J. Heinze  相似文献   

17.
Summary We investigated the role of the iridoid glycoside, catalpol, as a deterrent to the predator,Camponotus floridanus. Four laboratory colonies of this ant were offered buckeye caterpillars (Junonia coenia: Nymphalidae) raised on diets with and without catalpol. The same colonies were offered sugar-water solutions containing varying concentrations of catalpol, in both no-choice and choice tests. Regardless of diet, buckeye caterpillars appeared to be morphologically protected from predation by the ants, possibly because of their large spines or tough cuticle. However, buckeyes raised on diets with catalpol had high concentrations of catalpol in their hemolymph; extracts of this high-catalpol hemolymph proved to be an effective deterrent to the ants. When starved ants were not given the choice of food items, they were more likely to consume sucrose solutions that contained 5 mg catalpol/ml or 10 mg catalpol/ml than they were to consume solutions with 20 mg catalpol/ml. When they were given a choice of sugar solution or a sugar solution containing catalpol, the ants avoided solutions with catalpol at any of these concentrations. Ant colony responses to catalpol in sucrose solutions varied considerably over time and among colonies.  相似文献   

18.
We studied the effect of prior experience to eggs laid by nestmate and non-nestmate queens on the acceptance of queen-laid eggs by worker wood ants, Formica fusca. We transferred eggs from a non-nestmate queen into colonies during early spring, when their own queen was recommencing egg laying. A few weeks later, workers from these “experienced” colonies accepted eggs of both familiar (44% acceptance) and unfamiliar (40%) non-nestmate queens much more than workers from control colonies (2%) that had only had previous contact with their own queen’s eggs. Thus, prior exposure to eggs laid by a non-nestmate queen induces much greater acceptance of all non-nestmate queen-laid eggs. Mechanistically, we hypothesize that exposure to eggs from several queens may increase acceptance by causing a highly permissive acceptance threshold of non-nestmate queen-laid eggs rather than by widening the template for acceptable queen-laid eggs. These novel results show that egg-discrimination behaviour in F. fusca is flexible and that workers respond to the diversity of eggs experienced in their colony.  相似文献   

19.
20.
Ant colonies are factories within fortresses (Oster and Wilson 1978). They run on resources foraged from an outside world fraught with danger. On what basis do individual ants decide to leave the safety of the nest? We investigated the relative roles of social information (returning nestmates), individual experience and physiology (lipid stores/corpulence) in predicting which ants leave the nest and when. We monitored Temnothorax albipennis workers individually using passive radio-frequency identification technology, a novel procedure as applied to ants. This method allowed the matching of individual corpulence measurements to activity patterns of large numbers of individuals over several days. Social information and physiology are both good predictors of when an ant leaves the nest. Positive feedback from social information causes bouts of activity at the colony level. When certain social information is removed from the system by preventing ants returning, physiology best predicts which ants leave the nest and when. Individual experience is strongly related to physiology. A small number of lean individuals are responsible for most external trips. An individual’s nutrient status could be a useful cue in division of labour, especially when public information from other ants is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号